Publicación:
Combining evaluation metrics via the unanimous improvement ratio and its application in weps clustering task

dc.contributor.authorArtiles, Javier
dc.contributor.authorVerdejo, Felisa
dc.contributor.authorAmigo Cabrera, Enrique
dc.contributor.authorGonzalo Arroyo, Julio Antonio
dc.date.accessioned2024-05-21T13:03:32Z
dc.date.available2024-05-21T13:03:32Z
dc.date.issued2011-12-01
dc.description.abstractMany Artificial Intelligence tasks cannot be evaluated with a single quality criterion and some sort of weighted combination is needed to provide system rankings. A problem of weighted combination measures is that slight changes in the relative weights may produce substantial changes in the system rankings. This paper introduces the Unanimous Improvement Ratio (UIR), a measure that complements standard metric combination criteria (such as van Rijsbergen's F-measure) and indicates how robust the measured differences are to changes in the relative weights of the individual metrics. UIR is meant to elucidate whether a perceived difference between two systems is an artifact of how individual metrics are weighted. Besides discussing the theoretical foundations of UIR, this paper presents empirical results that confirm the validity and usefulness of the metric for the Text Clustering problem, where there is a tradeoff between precision and recall based metrics and results are particularly sensitive to the weighting scheme used to combine them. Remarkably, our experiments show that UIR can be used as a predictor of how well differences between systems measured on a given test bed will also hold in a different test bed.es
dc.description.versionversión publicada
dc.identifier.doihttp://doi.org/doi:10.1613/jair.3401
dc.identifier.urihttps://hdl.handle.net/20.500.14468/19986
dc.language.isoen
dc.publisherAssociation for the Advancement of Artificial Intelligence
dc.relation.centerE.T.S. de Ingeniería Informática
dc.relation.departmentLenguajes y Sistemas Informáticos
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.titleCombining evaluation metrics via the unanimous improvement ratio and its application in weps clustering taskes
dc.typejournal article en
dc.typeartículoes
dspace.entity.typePublication
relation.isAuthorOfPublicationf96c6e59-3a7a-4b0c-9b10-deec22f8c06b
relation.isAuthorOfPublication0e0d6c85-2d8e-4fb3-9640-8ad17e875fcc
relation.isAuthorOfPublication.latestForDiscoveryf96c6e59-3a7a-4b0c-9b10-deec22f8c06b
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Documento.pdf
Tamaño:
1.15 MB
Formato:
Adobe Portable Document Format