Publicación: Privacy Analysis in Mobile Apps and Social Networks Using AI Techniques
dc.contributor.author | Blanco Aza, Daniel | |
dc.contributor.author | Robles Gómez, Antonio | |
dc.contributor.author | Pastor Vargas, Rafael | |
dc.contributor.author | Tobarra Abad, María de los Llanos | |
dc.contributor.author | Vidal Balboa, Pedro | |
dc.contributor.author | Méndez Suárez, Mariano | |
dc.coverage.spatial | Valencia, Spain | |
dc.coverage.temporal | 2024-09-17 | |
dc.date.accessioned | 2025-05-09T08:23:16Z | |
dc.date.available | 2025-05-09T08:23:16Z | |
dc.date.issued | 2024-09-17 | |
dc.description | Esta es la versión aceptada del artículo. La versión registrada fue publicada por primera vez en 2024 4th Intelligent Cybersecurity Conference (ICSC), Valencia, Spain, 2024, pp. 188-195, está disponible en línea en el sitio web del editor: https://doi.org/10.1109/ICSC63108.2024.10895037. This is the accepted version of the article. The registered version was first published in 2024 4th Intelligent Cybersecurity Conference (ICSC), Valencia, Spain, 2024, pp. 188-195, is available online at the publisher's website: https://doi.org/10.1109/ICSC63108.2024.10895037. | |
dc.description.abstract | In the current landscape of mobile applications and social networks, privacy concerns have become paramount due to the extensive collection and processing of personal data. Therefore, this paper presents a comprehensive review of the state-of-the-art on automated privacy risk analysis in mobile applications and social networks. This review includes various methodologies, tools and frameworks that use ML and NLP systems to assess and ensure compliance with privacy regulations, such as the GDPR. Through a careful application of the PRISMA methodology, key studies have been systematically analyzed. Our findings reveal significant progress in the integration of automated techniques for assessing privacy risks. | en |
dc.description.version | versión final | |
dc.identifier.citation | D. Blanco-Aza, A. Robles-Gómez, R. Pastor-Vargas, L. Tobarra, P. Vidal-Balboa and M. Méndez-Suárez, "Privacy Analysis in Mobile Apps and Social Networks Using AI Techniques," 2024 4th Intelligent Cybersecurity Conference (ICSC), Valencia, Spain, 2024, pp. 188-195, https://doi.org/10.1109/ICSC63108.2024.10895037 | |
dc.identifier.doi | https://doi.org/10.1109/ICSC63108.2024.10895037 | |
dc.identifier.isbn | 979-8-3503-5477-5 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/26528 | |
dc.language.iso | en | |
dc.publisher | IEEE - Institute of Electrical and Electronics Engineers | |
dc.relation.center | E.T.S. de Ingeniería Informática | |
dc.relation.congress | Proceedings of the 2024 4th Intelligent Cybersecurity Conference (ICSC) | |
dc.relation.department | Sistemas de Comunicación y Control | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.subject | 12 Matemáticas::1203 Ciencia de los ordenadores ::1203.17 Informática | |
dc.subject.keywords | Automated Privacy Risk | en |
dc.subject.keywords | Mobile Apps | en |
dc.subject.keywords | AI Techniques | en |
dc.subject.keywords | PRISMA Methodology | en |
dc.subject.keywords | Data Privacy | en |
dc.title | Privacy Analysis in Mobile Apps and Social Networks Using AI Techniques | en |
dc.type | actas de congreso | es |
dc.type | conference proceedings | en |
dspace.entity.type | Publication | |
person.familyName | Robles Gómez | |
person.familyName | Pastor Vargas | |
person.familyName | Tobarra Abad | |
person.givenName | Antonio | |
person.givenName | Rafael | |
person.givenName | María de los Llanos | |
person.identifier.orcid | 0000-0002-5181-0199 | |
person.identifier.orcid | 0000-0002-4089-9538 | |
person.identifier.orcid | 0000-0003-2779-4042 | |
relation.isAuthorOfPublication | 17556659-f434-4220-841d-aac35f492e62 | |
relation.isAuthorOfPublication | f93103de-336d-47ac-886b-e2cbd425ed87 | |
relation.isAuthorOfPublication | b584f8a3-eb01-4a43-9ed7-5075b74224ae | |
relation.isAuthorOfPublication.latestForDiscovery | 17556659-f434-4220-841d-aac35f492e62 |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- RoblesGomez_Antonio_Privacy_Analysis_in_Mobil.pdf
- Tamaño:
- 1.15 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.62 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción: