Publicación:
Discovering HIV related information by means of association rules and machine learning

dc.contributor.authorAraujo Serna, M. Lourdes
dc.contributor.authorMartínez Romo, Juan
dc.contributor.authorBisbal, Otilia
dc.contributor.authorSanchez de Madariaga, Ricardo
dc.contributor.authorThe Cohort of the National AIDS Network (CoRIS)
dc.contributor.orcidhttps://orcid.org/0000-0003-3746-3378
dc.date.accessioned2024-09-19T10:16:12Z
dc.date.available2024-09-19T10:16:12Z
dc.date.issued2022-10-22
dc.descriptionThe registered version of this article, first published in “Scientific Reports, 12", is available online at the publisher's website: Nature Research, https://doi.org/10.1038/s41598-022-22695-y La versión registrada de este artículo, publicado por primera vez en “Scientific Reports, 12", está disponible en línea en el sitio web del editor: Nature Research, https://doi.org/10.1038/s41598-022-22695-y
dc.description.abstractAcquired immunodeficiency syndrome (AIDS) is still one of the main health problems worldwide. It is therefore essential to keep making progress in improving the prognosis and quality of life of affected patients. One way to advance along this pathway is to uncover connections between other disorders associated with HIV/AIDS-so that they can be anticipated and possibly mitigated. We propose to achieve this by using Association Rules (ARs). They allow us to represent the dependencies between a number of diseases and other specific diseases. However, classical techniques systematically generate every AR meeting some minimal conditions on data frequency, hence generating a vast amount of uninteresting ARs, which need to be filtered out. The lack of manually annotated ARs has favored unsupervised filtering, even though they produce limited results. In this paper, we propose a semi-supervised system, able to identify relevant ARs among HIV-related diseases with a minimal amount of annotated training data. Our system has been able to extract a good number of relationships between HIV-related diseases that have been previously detected in the literature but are scattered and are often little known. Furthermore, a number of plausible new relationships have shown up which deserve further investigation by qualified medical experts.en
dc.description.versionversión publicada
dc.identifier.citationAraujo, L., Martinez-Romo, J., Bisbal, O. et al. Discovering HIV related information by means of association rules and machine learning. Sci Rep 12, 18208 (2022). https://doi.org/10.1038/s41598-022-22695-y
dc.identifier.doihttps://doi.org/10.1038/s41598-022-22695-y
dc.identifier.issn2045-2322
dc.identifier.urihttps://hdl.handle.net/20.500.14468/23801
dc.journal.issue1
dc.journal.titleScientific Reports
dc.journal.volume12
dc.language.isoen
dc.page.initial18208
dc.publisherNature Research
dc.relation.centerFacultades y escuelas
dc.relation.departmentLenguajes y Sistemas Informáticos
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.es
dc.subject12 Matemáticas::1203 Ciencia de los ordenadores ::1203.17 Informática
dc.titleDiscovering HIV related information by means of association rules and machine learningen
dc.typeartículoes
dc.typejournal articleen
dspace.entity.typePublication
relation.isAuthorOfPublication77c4023e-4374-442a-9dfb-b9d4b609c31e
relation.isAuthorOfPublication91b7e317-2a30-494f-98e9-3a0e026747b1
relation.isAuthorOfPublication.latestForDiscovery77c4023e-4374-442a-9dfb-b9d4b609c31e
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
MartinezRomo_Juan_HIV.pdf
Tamaño:
1.56 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.62 KB
Formato:
Item-specific license agreed to upon submission
Descripción: