Publicación: Metric and Geometric Relaxations of Self-Contracted Curves
dc.contributor.author | Daniilidis, Aris | |
dc.contributor.author | Deville, Robert | |
dc.contributor.orcid | https://orcid.org/0000-0003-4837-694X | |
dc.date.accessioned | 2024-12-03T13:36:02Z | |
dc.date.available | 2024-12-03T13:36:02Z | |
dc.date.issued | 2018-10-13 | |
dc.description | The registered version of this article, first published in Journal of Optimization Theory and Applications, is available online at the publisher's website: Springer Nature, https://doi.org/10.1007/s10957-018-1408-0 | |
dc.description | La versión registrada de este artículo, publicado por primera vez en Journal of Optimization Theory and Applications, está disponible en línea en el sitio web del editor: Springer Nature, https://doi.org/10.1007/s10957-018-1408-0 | |
dc.description.abstract | The metric notion of a self-contracted curve (respectively, self-expanded curve, if we reverse the orientation) is hereby extended in a natural way. Two new classes of curves arise from this extension, both depending on a parameter, a specific value of which corresponds to the class of self-expanded curves. The first class is obtained via a straightforward metric generalization of the metric inequality that defines self-expandedness, while the second one is based on the (weaker) geometric notion of the so-called cone property (eel-curve). In this work, we show that these two classes are different; in particular, curves from these two classes may have different asymptotic behavior. We also study rectifiability of these curves in the Euclidean space, with emphasis in the planar case. | en |
dc.description.version | versión final | |
dc.identifier.citation | Daniilidis, A., Deville, R. & Durand-Cartagena, E. Metric and Geometric Relaxations of Self-Contracted Curves. J Optim Theory Appl 182, 81–109 (2019). https://doi.org/10.1007/s10957-018-1408-0 | |
dc.identifier.doi | https://doi.org/10.1007/s10957-018-1408-0 | |
dc.identifier.issn | 1573-2878 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/24678 | |
dc.journal.title | Journal of Optimization Theory and Applications | |
dc.journal.volume | 182 | |
dc.language.iso | en | |
dc.page.final | 109 | |
dc.page.initial | 81 | |
dc.publisher | Springer Nature | |
dc.relation.center | Facultades y escuelas::E.T.S. de Ingenieros Industriales | |
dc.relation.department | Matemática Aplicada I | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.subject | 12 Matemáticas | |
dc.subject.keywords | self-contracted curve | en |
dc.subject.keywords | self-expanded curve | en |
dc.subject.keywords | rectifiability | en |
dc.subject.keywords | length | en |
dc.subject.keywords | λ-curve | en |
dc.subject.keywords | λ-cone property | en |
dc.title | Metric and Geometric Relaxations of Self-Contracted Curves | en |
dc.type | artículo | es |
dc.type | journal article | en |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Metric and Geometric Relaxations.pdf
- Tamaño:
- 665.32 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.62 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción: