Publicación: Detección de holgura en ejes mediante análisis de vibraciones combinando WPT y SVM lineal
dc.contributor.author | Zamorano Garzón, Marta | |
dc.contributor.author | Gómez García, María Jesús | |
dc.contributor.author | Castejón Sisamón, Cristina | |
dc.date.accessioned | 2024-05-21T13:01:35Z | |
dc.date.available | 2024-05-21T13:01:35Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Habitualmente, la industria se centra en buscar una buena calidad y productividad de su servicio o producto, por lo que las tareas de mantenimiento juegan un papel relevante. Actualmente, el interés en conocer el estado de los sistemas en tiempo real y su conexión con las diferentes áreas de la industria está en crecimiento, lo que se ha denominado Mantenimiento 4.0. Uno de los objetivos de este tipo de mantenimiento es la detección de problemas o defectos durante el funcionamiento de la máquina, lo que requiere una investigación previa. En particular, la holgura es un defecto muy común en maquinaria rotativa que puede ocasionar graves problemas. La detección de defectos en maquinaria rotativa mediante la monitorización de estado realizando un análisis de vibraciones es cada vez más común. La detección prematura de holgura durante su funcionamiento permite evitar fallos catastróficos en la máquina, parándola solo cuando es imprescindible solventar el problema. En este trabajo se estudia el problema de holgura de un eje analizando las señales vibratorias que se producen durante su funcionamiento. Para ello, en una máquina de simulación de fallos se ensayarán, a diferentes frecuencias de rotación, dos ejes; uno sin holgura y otro eje mecanizado con un diámetro 0.5 mm menor, provocando una holgura en la conexión del eje con el motor mediante un acoplamiento y en el eje con los rodamientos. Las señales se analizarán mediante la Transformada en Paquetes Wavelet, herramienta basada en el dominio del tiempo y de la frecuencia. Para este fin, se seleccionará previamente la wavelet madre óptima aplicando una metodología propuesta en trabajos previos. Este estudio implica el uso de sistemas de clasificación inteligente, empleando modelos entrenados de tipo máquinas de soporte vectorial lineal. De esta forma, se obtendrán aquellos patrones que permitan la predicción del problema de holgura de la manera más rápida y fiable posible. | es |
dc.description.abstract | Usually, the industry focuses on seeking good quality and productivity of its service or product, so maintenance tasks play a relevant role. Currently, the interest in knowing the status of systems in real time and their connection with the different areas of the industry is growing, which has been called Maintenance 4.0. One of the objectives of this type of maintenance is the detection of problems or defects during the operation of the machine, which requires prior investigation. In particular, mechanical looseness is a very common defect in rotating machinery that can cause serious problems. Detecting defects in rotating machinery through condition monitoring by performing vibration analysis is becoming more and more common. The premature detection of play during its operation allows avoiding catastrophic failures in the machine, stopping it only when it is essential to solve the problem. In this work, the looseness problem of a shaft is analysed by analysing the vibratory signals that are produced during its operation. To do this, in a fault simulation machine, two shafts will be tested at different rotation frequencies; one without looseness and another machined shaft with a diameter 0.5 mm smaller, causing a looseness in the connection of the shaft with the motor through a coupling and in the shaft with the bearings. The signals will be analysed using the Wavelet Packet Transform, a tool based on the time and frequency domain. For this purpose, the optimal mother wavelet will be previously selected by applying a methodology proposed in previous works. This study involves the use of intelligent classification systems, employing trained models of linear vector support machines. In this way, those patterns that allow the prediction of the looseness problem in the fastest and most reliable way possible will be obtained. | en |
dc.description.version | versión publicada | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/19743 | |
dc.language.iso | es | |
dc.publisher | ['Universidad Nacional de Educación a Distancia (España)', 'Universidad Politécnica de Madrid. Departamento de Ingeniería Mecánica'] | |
dc.relation.center | E.T.S. de Ingenieros Industriales | |
dc.relation.congress | XV Congreso Iberoamericano de Ingeniería Mecánica. Madrid, España, 22-24 de noviembre de 2022. CIBIM 2022 | |
dc.relation.department | Mecánica | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject.keywords | análisis de vibraciones | |
dc.subject.keywords | holgura | |
dc.subject.keywords | WPT | |
dc.subject.keywords | SVM lineal | |
dc.title | Detección de holgura en ejes mediante análisis de vibraciones combinando WPT y SVM lineal | es |
dc.type | conference proceedings | en |
dc.type | actas de congreso | es |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Abs_26_182378.docx
- Tamaño:
- 763.61 KB
- Formato:
- Microsoft Word XML