Publicación: Approximate solutions of vector optimization problems via improvement sets in real linear spaces
Cargando...
Fecha
2018-04
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
Atribución-NoComercial-SinDerivadas 4.0 Internacional
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer Nature
Resumen
We deal with a constrained vector optimization problem between real linear spaces without assuming any topology and by considering an ordering defined through an improvement set E. We study E-optimal and weak E-optimal solutions and also proper E-optimal solutions in the senses of Benson and Henig. We relate these types of solutions and we characterize them through approximate solutions of scalar optimization problems via linear scalarizations and nearly E-subconvexlikeness assumptions. Moreover, in the particular case when the feasible set is defined by a cone-constraint, we obtain characterizations by means of Lagrange multiplier rules. The use of improvement sets allows us to unify and to extend several notions and results of the literature. Illustrative examples are also given.
Descripción
Categorías UNESCO
Palabras clave
Vector optimization, Improvement set, Approximate weak efficiency, Approximate proper efficiency, Nearly E-subconvexlikeness, Linear scalarization, Lagrange multipliers, algebraic interior, Vector closure
Citación
Centro
Facultades y escuelas::E.T.S. de Ingenieros Industriales
Departamento
Matemática Aplicada I