Publicación:
Coarse-graining Brownian motion : from particles to a discrete diffusion equation

dc.contributor.authorTorre Rodríguez, Jaime Arturo de la
dc.contributor.directorEspañol Garrigós, Pep
dc.date.accessioned2024-05-20T12:41:05Z
dc.date.available2024-05-20T12:41:05Z
dc.date.issued2010-10-13
dc.description.abstractWe consider a recently obtained coarse-grained discrete equation for the diffusion of Brownian particles. The detailed level of description is governed by a Brownian dynamics of non-interacting particles. The coarse-level is described by discrete concentration variables defined in terms of the Delaunay cell. These coarse variables obey a stochastic differential equation that can be understood as a discrete version of a diffusion equation. The diffusion equation contains two basic building blocks which are the entropy function and the friction matrix. The entropy function is shown to be non-additive due to the overlapping of cells in the Delaunay construction. The friction matrix is state dependent in principle, but for near-equilibrium situations it is shown that it may safely evaluated at the equilibrium value of the density fielden
dc.description.versionversión final
dc.identifier.urihttps://hdl.handle.net/20.500.14468/14729
dc.language.isoen
dc.publisherUniversidad Nacional de Educación a Distancia (España). Facultad de Ciencias
dc.relation.centerFacultades y escuelas::Facultad de Ciencias
dc.relation.degreeMáster universitario en Física de Sistemas Complejos
dc.relation.departmentFísica Fundamental
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.titleCoarse-graining Brownian motion : from particles to a discrete diffusion equationes
dc.typetesis de maestríaes
dc.typemaster thesisen
dspace.entity.typePublication
relation.isAuthorOfPublication488cdc69-4873-4328-9762-aa4d769eb267
relation.isAuthorOfPublication.latestForDiscovery488cdc69-4873-4328-9762-aa4d769eb267
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Documento.pdf
Tamaño:
2.56 MB
Formato:
Adobe Portable Document Format