Publicación:
A novel approach to the placement problem for FPGAs based on genetic algorithms.

dc.contributor.authorVeredas Ramírez, Francisco Javier
dc.contributor.directorCarmona Suárez, Enrique Javier
dc.date.accessioned2024-05-20T12:34:28Z
dc.date.available2024-05-20T12:34:28Z
dc.date.issued2017-07-07
dc.description.abstractThis Master's thesis investigates the critical path optimization in the FPGA's placement. An initial investigation of the FPGA's placement problem shows that the minimization of the traditional cost function used in the simulated annealing's placement not always produce a minimal critical path. Therefore, it is proposed to use the routing algorithm as a cost function to improve the nal critical path. The experimental results conrm that this new cost function has better quality results than the traditional cost function, at the expenses of longer execution time. A genetic algorithm using the routing algorithm as a cost function is found to reduce the execution time meanwhile is maintained a minimal critical path. The use of genetic algorithms with the new cost function will be useful in those cases where a minimum critical path is needed. Furthermore, this work investigates the use of genetic algorithm using the traditional cost function. In this case, no better critical path in comparison with a simulated annealing's placement is observed.en
dc.description.versionversión final
dc.identifier.urihttps://hdl.handle.net/20.500.14468/14540
dc.language.isoen
dc.publisherUniversidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial
dc.relation.centerFacultades y escuelas::E.T.S. de Ingeniería Informática
dc.relation.degreeMáster Universitario en I.A. Avanzada: Fundamentos, Métodos y Aplicaciones
dc.relation.departmentInteligencia Artificial
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.titleA novel approach to the placement problem for FPGAs based on genetic algorithms.es
dc.typetesis de maestríaes
dc.typemaster thesisen
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Veredas_Ramirez_FranciscoJavier_TFM.pdf
Tamaño:
2.57 MB
Formato:
Adobe Portable Document Format