Fecha
2025-05-27
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editorial
Wiley

Citas

0 citas en WOS
0 citas en
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
Recommender systems are tools for interacting with large and complex information spaces by providing a personalised view of such spaces, prioritising items that are likely to be of interest to the user. In addition, they serve as a significant tool in academic research, helping authors select the most appropriate journals for their academic articles. This paper presents a comprehensive study of various journal recommender systems, focusing on the synergy of graph neural networks (GNNs) with pretrained transformers for enhanced text classification. Furthermore, we propose a content-based journal recommender system that combines a pretrained Transformer with a Graph Attention Network (GAT) using title, abstract and keywords as input data. The proposed architecture enhances text representation by forming graphs from the Transformers' hidden states and attention matrices, excluding padding tokens. Our findings highlight that this integration improves the accuracy of the journal recommendations and reduces the transformer oversmoothing problem, with RoBERTa outperforming BERT models. Furthermore, excluding padding tokens from graph construction reduces training time by 8%–15%. Furthermore, we offer a publicly available dataset comprising 830,978 articles.
Descripción
The registered version of this article, first published in Expert Systems: The Journal of Knowledge Engineering, is available online at the publisher's website: Wiley, https://doi.org/10.1111/exsy.70073
La versión registrada de este artículo, publicado por primera vez en Expert Systems: The Journal of Knowledge Engineering, está disponible en línea en el sitio web del editor: Wiley, https://doi.org/10.1111/exsy.70073
This work was supported by CYTED Ciencia y Tecnología para el Desarrollo and Comunidad de Madrid.
Categorías UNESCO
Palabras clave
BERT, graph attention network, graph neural network, journal recommendation, recommender systems, RoBERTa, transformers
Citación
Liu, J., Castillo-Cara, M. and García-Castro, R. (2025), On the Significance of Graph Neural Networks With Pretrained Transformers in Content-Based Recommender Systems for Academic Article Classification. Expert Systems, 42: e70073. https://doi.org/10.1111/exsy.70073
Centro
E.T.S. de Ingeniería Informática
Departamento
Inteligencia Artificial
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra
Datos de investigación relacionados