Publicación: Deep mixed precision for hyperspectral image classification
dc.contributor.author | Paoletti, Mercedes Eugenia | |
dc.contributor.author | X. Tao | |
dc.contributor.author | Haut, Juan Mario | |
dc.contributor.author | Moreno Álvarez, Sergio | |
dc.contributor.author | Plaza, Antonio | |
dc.contributor.orcid | https://orcid.org/0000-0003-1030-3729 | |
dc.contributor.orcid | https://orcid.org/0000-0001-6701-961X | |
dc.contributor.orcid | https://orcid.org/0000-0002-9613-1659 | |
dc.date.accessioned | 2024-11-15T11:31:39Z | |
dc.date.available | 2024-11-15T11:31:39Z | |
dc.date.issued | 2021-02-03 | |
dc.description | The registered version of this article, first published in “Journal of Supercomputing 77, 2021", is available online at the publisher's website: Springer, https://doi.org/10.1007/s11227-021-03638-2 La versión registrada de este artículo, publicado por primera vez en “Journal of Supercomputing 77, 2021", está disponible en línea en el sitio web del editor: Springer, https://doi.org/10.1007/s11227-021-03638-2 | |
dc.description.abstract | Hyperspectral images (HSIs) record scenes at different wavelength channels, providing detailed spatial and spectral information. How to storage and process this highdimensional data plays a vital role in many practical applications, where classification technologies have emerged as excellent processing tools. However, their high computational complexity and energy requirements bring some challenges. Adopting low-power consumption architectures and deep learning (DL) approaches has to provide acceptable computing capabilities without reducing accuracy demand. However, most DL architectures employ single-precision (FP32) to train models, and some big DL architectures will have a limitation on memory and computation resources. This can negatively affect the network learning process. This letter leads these challenges by using mixed precision into DL architectures for HSI classification to speed up the training process and reduce the memory consumption/access. Proposed models are evaluated on four widely used data sets. Also, low and highpower consumption devices are compared, considering NVIDIA Jetson Xavier and Titan RTX GPUs, to evaluate the proposal viability in on-board processing devices. Obtained results demonstrate the efficiency and effectiveness of these models within HSI classification task for both devices. Source codes: https ://githu b.com/mhaut / CNN-MP-HSI. | en |
dc.description.version | versión final | |
dc.identifier.citation | Paoletti, M.E., Tao, X., Haut, J.M. et al. Deep mixed precision for hyperspectral image classification. J Supercomput 77, 9190–9201 (2021). https://doi.org/10.1007/s11227-021-03638-2 | |
dc.identifier.doi | https://doi.org/10.1007/s11227-021-03638-2 | |
dc.identifier.issn | 1573-0484, 0920-8542 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/24389 | |
dc.journal.issue | 8 | |
dc.journal.title | Journal of Supercomputing | |
dc.journal.volume | 77 | |
dc.language.iso | en | |
dc.page.final | 9201 | |
dc.page.initial | 9190 | |
dc.publisher | Springer | |
dc.relation.center | Facultades y escuelas::E.T.S. de Ingeniería Informática | |
dc.relation.department | Lenguajes y Sistemas Informáticos | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.subject | 12 Matemáticas::1203 Ciencia de los ordenadores ::1203.17 Informática | |
dc.subject.keywords | hyperspectral image | en |
dc.subject.keywords | deeplearning | en |
dc.subject.keywords | mixed precision | en |
dc.title | Deep mixed precision for hyperspectral image classification | en |
dc.type | artículo | es |
dc.type | journal article | en |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 3482d7bc-e120-48a3-812e-cc4b25a6d2fe | |
relation.isAuthorOfPublication.latestForDiscovery | 3482d7bc-e120-48a3-812e-cc4b25a6d2fe |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- MorenoAlvarez_Sergio_2021DeepMixedPrecisionFo_SERGIO MORENO ALVARE.pdf
- Tamaño:
- 1.13 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.62 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción: