Publicación:
The Reader is the Metric: How Textual Features and Reader Profiles Explain Conflicting Evaluations of AI Creative Writing

dc.contributor.authorMarco Remón, Guillermo
dc.contributor.authorGonzalo Arroyo, Julio Antonio
dc.contributor.authorFresno Fernández, Víctor Diego
dc.coverage.spatialViena
dc.coverage.temporal2025-07-27
dc.date.accessioned2025-12-03T14:53:17Z
dc.date.available2025-12-03T14:53:17Z
dc.date.issued2025-01-01
dc.descriptionThe registered version of this conference paper, first published in "Findings of the Association for Computational Linguistics: ACL 2025, pages 25432–25449, Vienna, Austria", is available online at the publisher's website: Association for Computational Linguistics, https//doi: 10.18653/v1/2025.findings-acl.1304
dc.descriptionLa versión registrada de esta comunicación, publicada por primera vez en "Findings of the Association for Computational Linguistics: ACL 2025, pages 25432–25449, Vienna, Austria", está disponible en línea en el sitio web del editor: Association for Computational Linguistics, https//doi: 10.18653/v1/2025.findings-acl.1304
dc.description.abstractRecent studies comparing AI-generated and human-authored literary texts have produced conflicting results: some suggest AI already surpasses human quality, while others argue it still falls short. We start from the hypothesis that such divergences can be largely explained by genuine differences in how readers interpret and value literature, rather than by an intrinsic quality of the texts evaluated. Using five public datasets (1,471 stories, 101 annotators including critics, students, and lay readers), we (i) extract 17 reference-less textual features (e.g., coherence, emotional variance, average sentence length...); (ii) model individual reader preferences, deriving feature importance vectors that reflect their textual priorities; and (iii) analyze these vectors in a shared “preference space”. Reader vectors cluster into two profiles: _surface-focused readers_ (mainly non-experts), who prioritize readability and textual richness; and _holistic readers_ (mainly experts), who value thematic development, rhetorical variety, and sentiment dynamics. Our results quantitatively explain how measurements of literary quality are a function of how text features align with each reader’s preferences. These findings advocate for reader-sensitive evaluation frameworks in the field of creative text generation.en
dc.description.versionversión publicada
dc.identifier.citationGuillermo Marco, Julio Gonzalo, and Víctor Fresno. 2025. The Reader is the Metric: How Textual Features and Reader Profiles Explain Conflicting Evaluations of AI Creative Writing. In Findings of the Association for Computational Linguistics: ACL 2025, pages 25432–25449, Vienna, Austria. Association for Computational Linguistics
dc.identifier.doihttps://doi.org/10.18653/v1/2025.findings-acl.1304
dc.identifier.isbn979-8-89176-256-5
dc.identifier.urihttps://hdl.handle.net/20.500.14468/30996
dc.language.isoen
dc.publisherAssociation for Computational Linguistics
dc.relation.centerE.T.S. de Ingeniería Informática
dc.relation.congress63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025)
dc.relation.departmentLenguajes y Sistemas Informáticos
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.es
dc.subject5701.04 Lingüística informatizada
dc.subject1203.04 Inteligencia artificial
dc.titleThe Reader is the Metric: How Textual Features and Reader Profiles Explain Conflicting Evaluations of AI Creative Writingen
dc.typeactas de congresoes
dc.typeconference proceedingsen
dspace.entity.typePublication
relation.isAuthorOfPublication1eeaa429-26ee-4f3d-9868-f4d0182e58ba
relation.isAuthorOfPublication0e0d6c85-2d8e-4fb3-9640-8ad17e875fcc
relation.isAuthorOfPublication80cd3492-0ff8-4c8e-a904-2858623c7fc1
relation.isAuthorOfPublication.latestForDiscovery1eeaa429-26ee-4f3d-9868-f4d0182e58ba
Archivos
Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
(Marco et al, 2025) 2025.findings-acl.1304_VICTOR DIEGO FRESNO.pdf
Tamaño:
660.54 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.62 KB
Formato:
Item-specific license agreed to upon submission
Descripción: