Publicación: Modelling of a surface marine vehicle with kernel ridge regression confidence machine
dc.contributor.author | Moreno Salinas, David | |
dc.contributor.author | Moreno, Raul | |
dc.contributor.author | Pereira, Augusto | |
dc.contributor.author | Aranda Almansa, JoaquĆn | |
dc.contributor.author | Cruz, Jesus M. de la | |
dc.date.accessioned | 2025-03-10T18:30:48Z | |
dc.date.available | 2025-03-10T18:30:48Z | |
dc.date.issued | 2018-12-27 | |
dc.description | The registered version of this article, first published in Applied Soft Computing, is available online at the publisher's website: Elsevier, https://doi.org/10.1016/j.asoc.2018.12.002 | |
dc.description | La versión registrada de este artĆculo, publicado por primera vez en Applied Soft Computing, estĆ” disponible en lĆnea en el sitio web del editor: Elsevier, https://doi.org/10.1016/j.asoc.2018.12.002 | |
dc.description.abstract | This paper describes the use of Kernel Ridge Regression (KRR) and Kernel Ridge Regression Confidence Machine (KRRCM) for black box identification of a surface marine vehicle. Data for training and test have been obtained from several manoeuvres typically used for marine system identification. Thus, a 20/20 degrees Zig-Zag, a 10/10 degrees Zig-Zag, and different evolution circles have been employed for the computation and validation of the model. Results show that the application of conformal prediction provides an accurate model that reproduces with large accuracy the actual behaviour of the ship with confidence margins that ensure that the model response is within these margins, making it a suitable tool for system identification. | en |
dc.description.version | versión final | |
dc.identifier.citation | David Moreno-Salinas, Raul Moreno, Augusto Pereira, Joaquin Aranda, Jesus M. de la Cruz, Modelling of a surface marine vehicle with kernel ridge regression confidence machine, Applied Soft Computing, Volume 76, 2019, Pages 237-250 | |
dc.identifier.doi | https://doi.org/10.1016/j.asoc.2018.12.002 | |
dc.identifier.issn | 1872-9681 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/26209 | |
dc.journal.title | Applied Soft Computing | |
dc.journal.volume | 76 | |
dc.language.iso | en | |
dc.page.final | 250 | |
dc.page.initial | 237 | |
dc.publisher | Elsevier | |
dc.relation.center | E.T.S. de Ingenieros Industriales | |
dc.relation.department | InformƔtica y AutomƔtica | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.subject | 1203 Ciencia de los ordenadores | |
dc.subject.keywords | system identification | en |
dc.subject.keywords | marine systems | en |
dc.subject.keywords | Kernel Ridge Regression (KRR) | en |
dc.subject.keywords | Conformal Predictors (CP) | en |
dc.subject.keywords | Kernel Ridge Regression Confidence Machine (KRRCM) | es |
dc.title | Modelling of a surface marine vehicle with kernel ridge regression confidence machine | en |
dc.type | artĆculo | es |
dc.type | journal article | en |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | cda6ce3d-ab73-4c9e-891f-543c04d8d53b | |
relation.isAuthorOfPublication | 3c2f82d3-b350-435d-9954-9321ab17ea9b | |
relation.isAuthorOfPublication.latestForDiscovery | cda6ce3d-ab73-4c9e-891f-543c04d8d53b |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Modelling of a surface marine vehicle with kernel ridge.pdf
- TamaƱo:
- 5.97 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- TamaƱo:
- 3.62 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción: