Publicación: Data projections by skewness maximization under scale mixtures of skew-normal vectors
Cargando...
Fecha
2020-02-22
Autores
Martín Arevalillo, Jorge::virtual::3504::600
Navarro Veguillas, Hilario::virtual::3505::600
Martín Arevalillo, Jorge
Navarro Veguillas, Hilario
Martín Arevalillo, Jorge
Navarro Veguillas, Hilario
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer
Resumen
Multivariate scale mixtures of skew-normal distributions are flexible models that account for the non-normality of data by means of a tail weight parameter and a shape vector representing the asymmetry of the model in a directional fashion. Its stochastic representation involves a skew-normal vector and a non negative mixing scalar variable, independent of the skew-normal vector, that injects tail weight behavior into the model. In this paper we look into the problem of finding the projection that maximizes skewness for vectors that follow a scale mixture of skew-normal distribution; when a simple condition on the moments of the mixing variable is fulfilled, it can be shown that the direction yielding the maximal skewness is proportional to the shape vector. This finding stresses the directional nature of the shape vector to regulate the asymmetry; it also provides the theoretical foundations motivating the skewness based projection pursuit problem in this class of distributions. Some examples that illustrate the application of our results are also given; they include a simulation experiment with artificial data, which sheds light on the usefulness and implications of our results, and the application to real data.
Descripción
Categorías UNESCO
Palabras clave
Skew-normal, Scale mixtures of Skew-normal distributions, Maximal skewness projection
Citación
Centro
Facultad de Ciencias
Departamento
Estadística, Investigación Operativa y Cálculo Numérico