Publicación: Desarrollo y evaluación de componentes de pilas poliméricas (PEM) con carga ultrabaja de platino
Cargando...
Fecha
2015-12-10
Autores
Editor/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
Atribución-NoComercial-SinDerivadas 4.0 Internacional
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional de Educación a Distancia (España). Facultad de Ciencias. Departamento de Física Matemática y de Fluidos
Resumen
La necesidad del platino cómo catalizador en las pilas de combustible poliméricas es una de las principales barreras que impiden el desarrollo masivo de esta tecnología. El coste, la escasez y la limitación de este metal precioso hacen que los estudios (tanto experimentales como teóricos) que tengan como objetivo la reducción de la cantidad de platino empleada, sin perjudicar sensiblemente el rendimiento de la pila, puedan considerarse clave para una futura implementación a gran escala de esta tecnología. La técnica de atomización electrohidrodinámica de tintas catalíticas, para la formación de materiales nanoestructurados a partir de la deposición controlada del residuo seco, permite preparar electrodos para pilas de combustible con un contenido de platino ultrabajo. Las capas catalíticas generadas con esta técnica poseen una alta porosidad y fractalidad, dando lugar a una alta exposición de los centros catalíticos a los gases reactantes. Esta técnica de atomización mediante electrospray ha sido empleada en la elaboración de todas las capas catalíticas desarrolladas durante este trabajo. En una primera fase se ha llevado a cabo un estudio de viabilidad del escalado de las capas, ya que hasta el momento sólo se había utilizado para preparar capas catalíticas de 5 cm2, escalando el proceso para conseguir capas catalíticas de 25 cm2 y 50 cm2 satisfactoriamente. Para la escalabilidad se generaron capas catalíticas con las mismas características que las de 5 cm2 con el fin de comprobar que los resultados eran reproducibles en las distintas escalas. El rendimiento de estas capas catalíticas fue evaluado en detalle variando las condiciones de operación para superficies catalíticas de 25 cm2. En una segunda fase se ha estudiado la dependencia del rendimiento del MEA con el contenido de platino por unidad de superficie de electrodo. Primero variando la cantidad de platino en la capa catalítica entre 0.0025 mgPt cm2 y 0.04 mgPt cm2 para superficies de 5 cm2 y haciendo uso del mismo compuesto catalítico empleado en la escalabilidad (10% Pt/C: nanopartículas de carbono con un 10% en peso de platino soportado en su superficie). Posteriormente, se han utilizado catalizadores Pt/C con otros porcentajes en peso de platino variando el contenido en platino del 0.01 mgPt cm2 al 0.6 mgPt cm2. Las mejores respuestas de potencia se obtuvieron para capas catalíticas elaboradas a partir de 20% Pt/C y con un contenido en platino entre 0.02 mgPt cm2 y 0.04 mgPt cm2; por este motivo se elaboraron electrodos de estas características a mayor escala (25 cm2) que han sido ensayados en mayor detalle para diferentes condiciones de operación.
The required use of platinum as catalyzer in polymeric fuel cells is one of the main problems which inhibit the massive development of this technology. The cost, scarcity and limited resources of this precious metal entail the performance of experimental and theoretical studies which aim to reduce the amount of platinum in the electrodes without causing significant reductions of the fuel cell performance. These studies could be crucial for a worldwide scale implementation of this technology in the near future. This Ph.D. work deals with the electrospray technique to atomize catalytic inks for the generation of granular materials form the controlled deposition of the ink dry residue o be used as nanostructured electrodes with a very low Pt loading. The catalytic layer generated has a high porosity and fractality which leads to a high exposure of the catalytic centers to the reactant gases. This electrospray method has been used to generate all the catalytic layers used in this essay. Until now only 5 cm2 electrodes had been prepared with this technique. Therefore, and as a first stage, a feasibility study for the scaling-up of catalyst layers to larger (commercial type) sizes has been carried out. The scaling to 25 cm2 and 50 cm2 squared electrodes has been made successfully. The catalytic layers elaborated for these scaling-up studies had the same features as the 5 cm2 layers; to check the reproducibility of the results for electrodes with larger sizes. The catalytic layer performance was evaluated in detail under different operation conditions for squared electrodes with a surface of 25 cm2. In a second stage, the dependence of MEA performances with the platinum load was studied. First of all, the platinum load of the catalytic layer has been varied in the range of 0.0025 mgPt cm2 to 0.04 mgPt cm2 for 5 cm2 electrodes formed by the same kind of Pt/C nanoparticles utilized in the scalability tests (10% Pt/C: carbon nanoparticles supporting 10wt% of platinum). Later on, different platinum ratios in the nanoparticles were tested and the platinum load was varied from 0.01 mgPt cm2 to 0.16 mgPt cm2. The best power performances were obtained for catalytic layers made with 20% Pt/C nanoparticles and a platinum load between 0.02 mgPt cm2 and 0.04 mgPt cm2. For this reason, electrodes with these characteristics and larger sizes (25 cm2) were prepared and tested in detail under different operation conditions.
The required use of platinum as catalyzer in polymeric fuel cells is one of the main problems which inhibit the massive development of this technology. The cost, scarcity and limited resources of this precious metal entail the performance of experimental and theoretical studies which aim to reduce the amount of platinum in the electrodes without causing significant reductions of the fuel cell performance. These studies could be crucial for a worldwide scale implementation of this technology in the near future. This Ph.D. work deals with the electrospray technique to atomize catalytic inks for the generation of granular materials form the controlled deposition of the ink dry residue o be used as nanostructured electrodes with a very low Pt loading. The catalytic layer generated has a high porosity and fractality which leads to a high exposure of the catalytic centers to the reactant gases. This electrospray method has been used to generate all the catalytic layers used in this essay. Until now only 5 cm2 electrodes had been prepared with this technique. Therefore, and as a first stage, a feasibility study for the scaling-up of catalyst layers to larger (commercial type) sizes has been carried out. The scaling to 25 cm2 and 50 cm2 squared electrodes has been made successfully. The catalytic layers elaborated for these scaling-up studies had the same features as the 5 cm2 layers; to check the reproducibility of the results for electrodes with larger sizes. The catalytic layer performance was evaluated in detail under different operation conditions for squared electrodes with a surface of 25 cm2. In a second stage, the dependence of MEA performances with the platinum load was studied. First of all, the platinum load of the catalytic layer has been varied in the range of 0.0025 mgPt cm2 to 0.04 mgPt cm2 for 5 cm2 electrodes formed by the same kind of Pt/C nanoparticles utilized in the scalability tests (10% Pt/C: carbon nanoparticles supporting 10wt% of platinum). Later on, different platinum ratios in the nanoparticles were tested and the platinum load was varied from 0.01 mgPt cm2 to 0.16 mgPt cm2. The best power performances were obtained for catalytic layers made with 20% Pt/C nanoparticles and a platinum load between 0.02 mgPt cm2 and 0.04 mgPt cm2. For this reason, electrodes with these characteristics and larger sizes (25 cm2) were prepared and tested in detail under different operation conditions.
Descripción
Categorías UNESCO
Palabras clave
Citación
Centro
Facultades y escuelas::Facultad de Ciencias