Publicación:
WarehouseGame Training: A Gamified Logistics Training Platform Integrating ChatGPT, DeepSeek, and Grok for Adaptive Learning

dc.contributor.authorRomero Marras, Juan José
dc.contributor.authorTorre Cubillo, Luis de la
dc.contributor.authorChaos García, Dictino
dc.date.accessioned2025-06-10T10:07:47Z
dc.date.available2025-06-10T10:07:47Z
dc.date.issued2025-06-06
dc.descriptionThe registered version of this article, first published in “Applied Sciences, vol. 15, 2025", is available online at the publisher's website: MDPI, https://doi.org/10.3390/app15126392 La versión registrada de este artículo, publicado por primera vez en “Applied Sciences, vol. 15, 2025", está disponible en línea en el sitio web del editor: MDPI, https://doi.org/10.3390/app15126392
dc.description.abstractModern warehouses play a fundamental role in today’s logistics, serving as strategic hubs for the reception, storage, and distribution of goods. However, training warehouse operators presents a significant challenge due to the complexity of logistics processes and the need for efficient and engaging learning methods. Training in logistics operations requires practical experience and the ability to adapt to real-world scenarios, which can result in high training costs. In this context, gamification and artificial intelligence emerge as innovative solutions to enhance training by increasing operator motivation, reducing learning time, and optimizing costs through personalized approaches. But is it possible to effectively apply these techniques to logistics training? This study introduces WarehouseGame Training, a gamified training tool developed in collaboration with Mecalux Software Solutions and implemented in Unity 3D. The solution integrates large language models (LLMs) such as ChatGPT, DeepSeek, and Grok to enhance adaptive learning. These models dynamically adjust challenge difficulty, provide contextual assistance, and evaluate user performance in logistics training scenarios. Through this gamified training tool, the performance of these AI models is analyzed and compared, assessing their ability to improve the learning experience and determine which one best adapts to this type of training.en
dc.description.versionversión final
dc.identifier.citationRomero Marras, J.J.; De la Torre, L.; Chaos García, D. WarehouseGame Training: A Gamified Logistics Training Platform Integrating ChatGPT, DeepSeek, and Grok for Adaptive Learning. Appl. Sci. 2025, 15, 6392. https://doi.org/10.3390/app15126392
dc.identifier.doihttps://doi.org/10.3390/app15126392
dc.identifier.issn2076-3417
dc.identifier.urihttps://hdl.handle.net/20.500.14468/26881
dc.journal.issue12
dc.journal.titleApplied Sciences
dc.journal.volume15
dc.language.isoen
dc.page.initial6392
dc.publisherMDPI
dc.relation.centerE.T.S. de Ingeniería Informática
dc.relation.departmentInformática y Automática
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.es
dc.subject1203.17 Informática
dc.subject.keywordsgamificationen
dc.subject.keywordslogistics trainingen
dc.subject.keywordslarge language modelsen
dc.subject.keywordsadaptive learningen
dc.subject.keywordsUnity 3Den
dc.subject.keywordsChatGPTen
dc.subject.keywordsDeepSeeken
dc.subject.keywordsGroken
dc.titleWarehouseGame Training: A Gamified Logistics Training Platform Integrating ChatGPT, DeepSeek, and Grok for Adaptive Learningen
dc.typeartículoes
dc.typejournal articleen
dspace.entity.typePublication
relation.isAuthorOfPublicationd3cfe1c5-d5e5-459e-8ed3-cb1ebb07639e
relation.isAuthorOfPublication18d715ed-9aa0-4e6c-bb27-fb30fa2af05d
relation.isAuthorOfPublication.latestForDiscoveryd3cfe1c5-d5e5-459e-8ed3-cb1ebb07639e
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
preprints202505.0520.v1_LUIS DE LA TORRE CUB.pdf
Tamaño:
18.87 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.62 KB
Formato:
Item-specific license agreed to upon submission
Descripción: