Publicación: Self-Adaptive Polynomial Mutation in Multi-Objective Evolutionary Algorithms
dc.contributor.author | Carles Bou, José Luis | |
dc.contributor.director | Fernández Galán, Severino | |
dc.date.accessioned | 2024-05-20T12:38:26Z | |
dc.date.available | 2024-05-20T12:38:26Z | |
dc.date.issued | 2022-09-01 | |
dc.description.abstract | Evolutionary multi-objective optimization is a field that has experienced a rapid growth in the last two decades. Although an important number of new multi-objective evolutionary algorithms have been designed by the scientific community, the popular Non-Dominated Sorting Genetic Algorithm (NSGAII) remains as a widely used baseline for performance comparison purposes. Since every evolutionary algorithm needs several parameters to be set up in order to operate, parameter control constitutes a crucial task for the effective and efficient performance of multi-objective evolutionary algorithms. However, despite the advancements in parameter control for evolutionary algorithms, NSGA-II has been mainly used in the literature with fine-tuned static parameters. This paper introduces a novel and computationally lightweight self-adaptation mechanism for controlling the distribution index parameter of the polynomial mutation operator usually employed by NSGA-II in particular and by multi-objective evolutionary algorithms in general. Additionally, the classical NSGA-II using polynomial mutation with a static distribution index is compared with this new version utilizing a self-adapted parameter. The experiments carried out over twenty-five benchmark problems using three quality indicators (hypervolume, generalized spread, and modified inverted generational distance) show that the proposed self-adaptive mutator variant outperforms its static counterpart in most of the cases. This result supports the potential of self-adaptive parameter control in multi-objective evolutionary algorithms. | en |
dc.description.version | versión final | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/14657 | |
dc.language.iso | en | |
dc.publisher | Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial | |
dc.relation.center | Facultades y escuelas::E.T.S. de Ingeniería Informática | |
dc.relation.degree | Máster universitario en Investigación en Inteligencia Artificial | |
dc.relation.department | Inteligencia Artificial | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.subject.keywords | multi-objective evolutionary algorithm | |
dc.subject.keywords | NSGA-II | |
dc.subject.keywords | polynomial mutation | |
dc.subject.keywords | distribution index self-adaptation | |
dc.title | Self-Adaptive Polynomial Mutation in Multi-Objective Evolutionary Algorithms | es |
dc.type | tesis de maestría | es |
dc.type | master thesis | en |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Carles_Bou_JoseLuis_TFM.pdf
- Tamaño:
- 810.18 KB
- Formato:
- Adobe Portable Document Format