Publicación:
Numerical Solutions to Wave Propagation and Heat Transfer Non-Linear PDEs by Using a Meshless Method

dc.contributor.authorFlores, Jesús
dc.contributor.authorGarcía, Ángel
dc.contributor.authorNegreanu, Mihaela
dc.contributor.authorSalete Casino, Eduardo
dc.contributor.authorUreña, Francisco
dc.contributor.authorVargas Ureña, Antonio Manuel
dc.date.accessioned2025-01-07T12:32:13Z
dc.date.available2025-01-07T12:32:13Z
dc.date.issued2022-01-21
dc.descriptionLa versión registrada de este artículo, publicado por primera vez en Mathematics. 2022; 10(3):332, está disponible en línea en el sitio web del editor: https://doi.org/10.3390/math10030332 The copyrighted version of this article, first published in Mathematics. 2022; 10(3):332, is available online at the publisher's website: https://doi.org/10.3390/math10030332
dc.description.abstractThe applications of the Eikonal and stationary heat transfer equations in broad fields of science and engineering are the motivation to present an implementation, not only valid for structured domains but also for completely irregular domains, of the meshless Generalized Finite Difference Method (GFDM). In this paper, the fully non-linear Eikonal equation and the stationary heat transfer equation with variable thermal conductivity and source term are solved in 2D. The explicit formulae for derivatives are developed and applied to the equations in order to obtain the numerical schemes to be used. Moreover, the numerical values that approximate the functions for the considered domain are obtained. Numerous examples for both equations on irregular 2D domains are exposed to underline the effectiveness and practicality of the method.en
dc.description.versionversión publicada
dc.identifier.citationFlores J, García Á, Negreanu M, Salete E, Ureña F, Vargas AM. Numerical Solutions to Wave Propagation and Heat Transfer Non-Linear PDEs by Using a Meshless Method. Mathematics. 2022; 10(3):332. https://doi.org/10.3390/math10030332
dc.identifier.doihttps://doi.org/10.3390/math10030332
dc.identifier.issn2227-7390
dc.identifier.urihttps://hdl.handle.net/20.500.14468/25122
dc.journal.issue3
dc.journal.titleMathematics
dc.journal.volume10
dc.language.isoen
dc.publisherMDPI
dc.relation.centerFacultades y escuelas::E.T.S. de Ingenieros Industriales
dc.relation.departmentIngeniería de Construcción y Fabricación
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.es
dc.subject33 Ciencias Tecnológicas::3310 Tecnología industrial
dc.subject.keywordsgeneralized finite difference methoden
dc.subject.keywordseikonal equationen
dc.subject.keywordsheat transfer equationen
dc.subject.keywordsmeshless methodsen
dc.subject.keywordsNewton–Raphsonen
dc.titleNumerical Solutions to Wave Propagation and Heat Transfer Non-Linear PDEs by Using a Meshless Methoden
dc.typeartículoes
dc.typejournal articleen
dspace.entity.typePublication
relation.isAuthorOfPublication86523637-0995-45f4-81c6-3440ed55bb88
relation.isAuthorOfPublication.latestForDiscovery86523637-0995-45f4-81c6-3440ed55bb88
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Salete_Casino_Eduardo_Numerical_solutions_to.pdf
Tamaño:
389.46 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.62 KB
Formato:
Item-specific license agreed to upon submission
Descripción: