Publicación: Diagnóstico de fallos en cajas de engranajes mediante la aplicación de diferentes técnicas de inteligencia artificial
Cargando...
Fecha
2017-07-19
Autores
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
Atribución-NoComercial-SinDerivadas 4.0 Internacional
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional de Educación a Distancia (España). Escuela Internacional de Doctorado. Programa de Doctorado en Tecnologías Industriales
Resumen
Las cajas de engranajes son vitales en la transmisión de movimiento en maquinaria industrial, un diagnóstico adecuado de las mismas es altamente demandado por la influencia en la economía de la empresa, al reducir costos operacionales, apoyar en las decisiones de mantenimiento y mejorar el nivel de seguridad. En el presente trabajo se realizó el diagnóstico fallos en cajas de engranajes basados el análisis de señales de vibración mediante la aplicación de diferentes técnicas de inteligencia artificial. Para ello se establecieron cuatro bases de datos, tres bases de datos de señales de vibración se adquirieron en el laboratorio y una cuarta base de datos pública; dos bases fueron en engranajes rectos y una en engranajes helicoidales, la cuarta base de datos combina engranajes rectos y helicoidales. Posteriormente a cada señal de las bases de datos se le extrajo los atributos en los dominios del tiempo, frecuencia y tiempo-frecuencia; luego se desarrollaron tres sistemas de diagnóstico: el sistema uno, se evaluó mediante pruebas estadísticas el mejor clasificador entre cuatro redes neuronales y random forest, el sistema dos, se evaluó el mejor clasificador del sistema uno con el clasificador de máquinas de soporte vectorial y una red neuronal, el sistema tres, evaluó como los atributos y su dominio influye en el resultado del clasificador random forest. Tras la ejecución de la pruebas en los sistemas de diagnóstico se determinó que random forest fue la técnica de inteligencia artificial que mejor desempeño tuvo para la clasificación de fallos en las cajas de engranajes.
Gearboxes are vital in the transmission of movement in industrial machinery, an adequate diagnosis is highly demanded by the influence in the economy of the company, to reduce operational costs, support maintenance decisions, and improve the safety level. In the present work the diagnosis was made in gearbox failures based analysis of vibration signals through the application of different techniques of artificial intelligence. For this purpose, four databases were established, three databases of vibration signals were acquired in the laboratory and a fourth public database; two bases were in spur gears, and one in helical gears, the fourth database combines spur and helical gears. Subsequently to each signal of the databases the attributes were extracted in the domains of time, frequency and time-frequency; then three diagnostic systems were developed: system one, evaluated through statistical tests the best classifier between four neural networks and random forest, system two, evaluated the best classifier of system one with the classifier of vector support machines and a neural network, the system three evaluated as attributes and domain influences the result of the random forest classifier. After the execution of the tests in the diagnostic systems it was determined that random forest was the technique of artificial intelligence that had better performance for the classification of faults in the gearboxes.
Gearboxes are vital in the transmission of movement in industrial machinery, an adequate diagnosis is highly demanded by the influence in the economy of the company, to reduce operational costs, support maintenance decisions, and improve the safety level. In the present work the diagnosis was made in gearbox failures based analysis of vibration signals through the application of different techniques of artificial intelligence. For this purpose, four databases were established, three databases of vibration signals were acquired in the laboratory and a fourth public database; two bases were in spur gears, and one in helical gears, the fourth database combines spur and helical gears. Subsequently to each signal of the databases the attributes were extracted in the domains of time, frequency and time-frequency; then three diagnostic systems were developed: system one, evaluated through statistical tests the best classifier between four neural networks and random forest, system two, evaluated the best classifier of system one with the classifier of vector support machines and a neural network, the system three evaluated as attributes and domain influences the result of the random forest classifier. After the execution of the tests in the diagnostic systems it was determined that random forest was the technique of artificial intelligence that had better performance for the classification of faults in the gearboxes.
Descripción
Categorías UNESCO
Palabras clave
caja de engranajes, diagnóstico de fallos, señal de vibración, inteligencia artificial, monitoreo de la condición, gearbox, fault diagnosis, vibration signal, artificial intelligence, condition monitoring
Citación
Centro
Facultades y escuelas::E.T.S. de Ingenieros Industriales
Departamento
Grupo de investigación
Grupo de innovación
Programa de doctorado
Programa de doctorado en tecnologías industriales