Publicación:
Impact of Physiological Signals Acquisition in the Emotional Support Provided in Learning Scenarios

dc.contributor.authorUria Rivas, R.
dc.contributor.authorRodriguez Sanchez, Cristina
dc.contributor.authorSantos, Olga C.
dc.contributor.authorVaquero, Joaquin
dc.contributor.authorJesus G. Boticario
dc.contributor.authorGonzález Boticario, Jesús
dc.contributor.orcidhttps://orcid.org/0000-0001-9243-2166
dc.contributor.orcidhttps://orcid.org/0000-0002-9281-4209
dc.contributor.orcidhttps://orcid.org/0000-0002-6976-0564
dc.date.accessioned2025-01-13T10:30:36Z
dc.date.available2025-01-13T10:30:36Z
dc.date.issued2019-10-17
dc.descriptionThe registered version of this article, first published in “Sensors, 19, 2019", is available online at the publisher's website: MDPI, https://doi.org/10.3390/s19204520 La versión registrada de este artículo, publicado por primera vez en “Sensors, 19, 2019", está disponible en línea en el sitio web del editor: MDPI, https://doi.org/10.3390/s19204520
dc.description.abstractPhysiological sensors can be used to detect changes in the emotional state of users with affective computing. This has lately been applied in the educational domain, aimed to better support learners during the learning process. For this purpose, we have developed the AICARP (Ambient Intelligence Context-aware Affective Recommender Platform) infrastructure, which detects changes in the emotional state of the user and provides personalized multisensorial support to help manage the emotional state by taking advantage of ambient intelligence features. We have developed a third version of this infrastructure, AICARP.V3, which addresses several problems detected in the data acquisition stage of the second version, (i.e., intrusion of the pulse sensor, poor resolution and low signal to noise ratio in the galvanic skin response sensor and slow response time of the temperature sensor) and extends the capabilities to integrate new actuators. This improved incorporates a new acquisition platform (shield) called PhyAS (Physiological Acquisition Shield), which reduces the number of control units to only one, and supports both gathering physiological signals with better precision and delivering multisensory feedback with more flexibility, by means of new actuators that can be added/discarded on top of just that single shield. The improvements in the quality of the acquired signals allow better recognition of the emotional states. Thereof, AICARP.V3 gives a more accurate personalized emotional support to the user, based on a rule-based approach that triggers multisensorial feedback, if necessary. This represents progress in solving an open problem: develop systems that perform as effectively as a human expert in a complex task such as the recognition of emotional statesen
dc.description.versionversión publicada
dc.identifier.citationUria-Rivas, R., Rodriguez-Sanchez, M. C., Santos, O. C., Vaquero, J., & Boticario, J. G. (2019). Impact of Physiological Signals Acquisition in the Emotional Support Provided in Learning Scenarios. Sensors, 19(20), 4520. https://doi.org/10.3390/s19204520
dc.identifier.doihttps://doi.org/10.3390/s19204520
dc.identifier.issn1424-8220
dc.identifier.urihttps://hdl.handle.net/20.500.14468/25215
dc.journal.issue20
dc.journal.titleSensors
dc.journal.volume19
dc.language.isoen
dc.publisherMDPI
dc.relation.centerE.T.S. de Ingeniería Informática
dc.relation.departmentIngeniería de Software y Sistemas Informáticos
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.es
dc.subject.keywordsphysiological sensorsen
dc.subject.keywordsaffective computingen
dc.subject.keywordsheart rateen
dc.subject.keywordsgalvanic skin responseen
dc.subject.keywordsskin temperatureen
dc.subject.keywordsemotionsen
dc.subject.keywordsapplications and case studiesen
dc.subject.keywordslearning environmentsen
dc.subject.keywordsfeedbacken
dc.subject.keywordsopen hardwareen
dc.titleImpact of Physiological Signals Acquisition in the Emotional Support Provided in Learning Scenarioses
dc.typeartículoes
dc.typejournal articleen
dspace.entity.typePublication
relation.isAuthorOfPublicationdf3339e5-d482-4ea3-85ad-3a554c2ba075
relation.isAuthorOfPublicatione067a1f1-6036-4974-a582-85b556587d18
relation.isAuthorOfPublication.latestForDiscoverye067a1f1-6036-4974-a582-85b556587d18
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Uria-Rivas etal 2019 Impact of physiological.pdf
Tamaño:
4.22 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.62 KB
Formato:
Item-specific license agreed to upon submission
Descripción: