Publicación:
Solving a chemotaxis-haptotaxis system in 2D using Generalized Finite Difference Method

dc.contributor.authorBenito Muñoz, Juan J.
dc.contributor.authorGarcía Hernández, Miguel Ángel
dc.contributor.authorGavete Corvinos, Luis Antonio
dc.contributor.authorNegreanu, Mihaela
dc.contributor.authorUreña, Francisco
dc.contributor.authorVargas Ureña, Antonio Manuel
dc.contributor.orcidhttps://orcid.org/0000-0002-9092-9619
dc.contributor.orcidhttps://orcid.org/0000-0001-6581-5671
dc.contributor.orcidhttps://orcid.org/0000-0003-0533-3464
dc.date.accessioned2024-12-17T11:24:18Z
dc.date.available2024-12-17T11:24:18Z
dc.date.issued2020-05-27
dc.descriptionThis is an Accepted Manuscript of an article published by Elsevier in "Computers & Mathematics with Applications, 80, 5, 2020, Pages 762-777", available at: https://doi.org/10.1016/j.camwa.2020.05.008. (https://www.sciencedirect.com/science/article/pii/S0898122120302066) Este es el manuscrito aceptado del artículo publicado por Elsevier en "Computers & Mathematics with Applications 80, 5, 2020, Pages 762-777", disponible en línea: https://doi.org/10.1016/j.camwa.2020.05.008. (https://www.sciencedirect.com/science/article/pii/S0898122120302066)
dc.description.abstractWe study a mathematical model of cancer cell invasion of tissue (extracellular matrix) consisting of a system of reaction-diffusion-taxis partial differential equations which describes the interactions between cancer cells, the matrix degrading enzyme and the host tissue. We analyze the local stability of the constant equilibrium solutions to the chemotaxis-haptotaxis system, we derive a discretization of the system by means of the Generalized Finite Difference Method (GFDM) and we prove the convergence of the discrete solution to the analytical one. Also, we provide several numerical examples on the applications of this meshless method over regular and irregular domains.en
dc.description.versionVersión enviada (preprint)
dc.identifier.citationJ.J. Benito, A. García, L. Gavete, M. Negreanu, F. Ureña, A.M. Vargas, Solving a chemotaxis–haptotaxis system in 2D using Generalized Finite Difference Method, Computers & Mathematics with Applications, Volume 80, Issue 5, 2020, Pages 762-777, ISSN 0898-1221, https://doi.org/10.1016/j.camwa.2020.05.008
dc.identifier.doihttps://doi.org/10.1016/j.camwa.2020.05.008
dc.identifier.issn1873-7668
dc.identifier.urihttps://hdl.handle.net/20.500.14468/24948
dc.journal.issue5
dc.journal.titleComputers & Mathematics with Applications
dc.journal.volume80
dc.language.isoen
dc.page.final777
dc.page.initial762
dc.publisherScienceDirect
dc.relation.centerFacultades y escuelas::E.T.S. de Ingenieros Industriales
dc.relation.departmentMatemática Aplicada I
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subject12 Matemáticas::1206 Análisis numérico::1206.13 Ecuaciones diferenciales en derivadas parciales
dc.subject24 Ciencias de la Vida::2407 Biología celular
dc.subject.keywordsChemotaxis-haptotaxisen
dc.subject.keywordsGeneralized Finite Differencesen
dc.subject.keywordsMeshless methoden
dc.titleSolving a chemotaxis-haptotaxis system in 2D using Generalized Finite Difference Methoden
dc.typeartículoes
dc.typejournal articleen
dspace.entity.typePublication
relation.isAuthorOfPublicationdbea073a-50f8-4b42-ab6f-109718b2eaa5
relation.isAuthorOfPublication6d700201-394b-4442-b0f1-dbe2a6703081
relation.isAuthorOfPublication.latestForDiscoverydbea073a-50f8-4b42-ab6f-109718b2eaa5
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
VargasUrena_AntonioManuel_ChemotaxisHaptotaxi_ANTONIO MANUEL VARGA.pdf
Tamaño:
1.18 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.62 KB
Formato:
Item-specific license agreed to upon submission
Descripción: