Publicación: Embedding Meaning Algebra into Distributional Semantics
Archivos
Fecha
2023-09-24
Autores
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Lenguajes y Sistemas Informáticos
Resumen
The field of distributional semantics has seen significant progress in recent years due to advancements in natural language processing techniques, particularly through the development of Neural Language Models like GPT and BERT. However, there are still challenges to overcome in terms of semantic representation, particularly in the lack of coherence and consistency in existing representation systems. This work introduces a framework defining the relationship between a probabilistic space, a set of meanings, and a vector space of static embedding representations; and establishes formal properties based on definitions that would be desirable for any distributional representation system to comply with in order to establish a common ground between distributional semantics and other approaches. This work also introduces an evaluation benchmark, defined on the basis of the formal properties introduced, which will allow to measure the quality of a representation system.
Descripción
Categorías UNESCO
Palabras clave
Citación
Centro
Facultades y escuelas::E.T.S. de Ingeniería Informática
Departamento
Lenguajes y Sistemas Informáticos