Publicación: Engineering large end-to-end correlations in finite fermionic chains
Fecha
2018-12-14
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
Título de la revista
ISSN de la revista
Título del volumen
Editor
American Physical Society.
Resumen
We explore deformations of finite chains of noninteracting fermions at half-filling which give rise to large correlations between their extremes. After a detailed study of the Su-Schrieffer-Heeger model, the tradeoff curve between end-to-end correlations and the energy gap of the chains is obtained using machine-learning techniques, paying special attention to the scaling behavior with the chain length.We find that edge-dimerized chains, where the second and penultimate hoppings are reinforced, are very often close to the optimal configurations. Our results allow us to conjecture that, given a fixed gap, the maximal attainable correlation falls exponentially with the system size. Study of the entanglement entropy and contour of the optimal configurations suggest that the bulk entanglement pattern is minimally modified from the clean case.
Descripción
Categorías UNESCO
Palabras clave
Citación
Centro
Facultad de Ciencias
Departamento
Física Fundamental