Publicación: Large solutions and gradient bounds for quasilinear elliptic equations
Cargando...
Fecha
2015-10-09
Autores
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Taylor and Francis Group
Resumen
We consider the quasilinear degenerate elliptic equation λu - Δpu + H(x,Du)= 0 in Ω where Δp is the p-Laplace operator, p > 2, λ ≥0 and Ω is a smooth open bounded subset of ℝN (N ≥ 2). Under suitable structure conditions on the function H, we prove local and global gradient bounds for the solutions. We apply these estimates to study the solvability of the Dirichlet problem, and the existence, uniqueness and asymptotic behavior of maximal solutions blowing up at the boundary. The ergodic limit for those maximal solutions is also studied and the existence and uniqueness of a so-called additive eigenvalue is proved in this context.
Descripción
Categorías UNESCO
Palabras clave
Ergodic problem, gradient estimates, P-Laplacian, large solutions, solvability of the Dirichlet problem
Citación
Leonori, T., & Porretta, A. (2016). Large solutions and gradient bounds for quasilinear elliptic equations. Communications in Partial Differential Equations, 41(6), 952–998. https://doi.org/10.1080/03605302.2016.1169286
Centro
Facultades y escuelas::Facultad de Ciencias
Departamento
Matemáticas Fundamentales