Publicación:
Analyzing Customer Satisfaction Through Online Reviews Using Topic Modeling and Linguistic Model: A Study of a Hotel Chain in Madrid

dc.contributor.authorShu, Ziwei
dc.contributor.authorSánchez Figueroa, María Cristina
dc.contributor.editorSpringer
dc.date.accessioned2025-07-04T16:54:43Z
dc.date.available2025-07-04T16:54:43Z
dc.date.issued2025
dc.descriptionThe registered version of this article, first published in “Systems and Technologies (SIST, volume 439)", is available online at the publisher's website: Universidad nacional de Educación a Distancia, https://10.1007/978-981-96-3081-3_20 La versión registrada de este artículo, publicado por primera vez en “Systems and Technologies (SIST, volume 439)", está disponible en línea en el sitio web del editor: Universidad nacional de Educación a Distancia, https://10.1007/978-981-96-3081-3_20
dc.description.abstractAbstract With the widespread use of social media and review platforms, Electronic Word of Mouth (eWOM) has a greater reach and influence than traditional Word of Mouth (WOM), becoming a vital information source for customers and companies. Online reviews, a representative type of eWOM, are essential for guiding customer hotel choices and helping hotel managers gain valuable insights for necessary improvements. Mining online reviews and sentiment analysis are popular research areas, where sentiment analysis typically classifies the overall sentiment of customer reviews as positive, neutral, or negative. This study presents an approach for analyzing hotel customer satisfaction using the Latent Dirichlet Allocation (LDA) model and the 2-tuple linguistic model. The LDA model, widely used for topic modeling, is employed to identify the topics that matter more to customers and influence their satisfaction. The 2-tuple linguistic model is applied in sentiment analysis to address information loss when converting compound scores into sentiment labels, offering a clearer and more intuitive representation of sentiment while retaining the information. The proposed model analyzes 26,740 TripAdvisor reviews from twenty hotels in Madrid that are part of the same hotel chain. The results highlight the importance of considering variations in hotel scores and rankings across different languages, as identical rankings do not always correspond to the same sentiment scores from English-speaking and Spanish-speaking reviews, and vice versa. This study contributes to online reviews research and hotel management by offering a clearer and more accurate expression of customer review sentiment through 2-tuple values, and the most frequent topics from reviews.en
dc.description.versionversión publicada
dc.identifier.citationShu, Ziwei; Sanchez Figueroa, Maria Cristina: "Analyzing Customer Satisfaction Through Online Reviews Using Topic Modeling and Linguistic Model: A Study of a Hotel Chain in Madrid. Smart Innovation", Systems and Technologies (SIST,volume 439), https://10.1007/978-981-96-3081-3_20
dc.identifier.doihttps://10.1007/978-981-96-3081-3_20
dc.identifier.issn2190-3018, eISSN 2190-3026
dc.identifier.urihttps://hdl.handle.net/20.500.14468/29241
dc.journal.issue439
dc.journal.titleSmart Innovation, Systems and Technologies
dc.journal.volume2
dc.language.isoen
dc.page.final330
dc.page.initial315
dc.publisherSpringer
dc.relation.centerFacultad de Ciencias Económicas y Empresariales
dc.relation.departmentEconomía aplicada y estadística
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rights.uriAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.subject53 Ciencias Económicas
dc.subject33 Ciencias Tecnológicas
dc.titleAnalyzing Customer Satisfaction Through Online Reviews Using Topic Modeling and Linguistic Model: A Study of a Hotel Chain in Madriden
dc.typeartículoes
dc.typejournal articleen
dspace.entity.typePublication
relation.isAuthorOfPublicationecf9447f-9fba-4d53-acbc-29d1e49274e8
relation.isAuthorOfPublication.latestForDiscoveryecf9447f-9fba-4d53-acbc-29d1e49274e8
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
4_SanchezFigueroa_MCristina_Springer_Articulo_MARIA CRISTINA SANCH.pdf
Tamaño:
1.85 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.62 KB
Formato:
Item-specific license agreed to upon submission
Descripción: