Publicación:
Comparison principles for p-Laplace equations with lower order terms

Cargando...
Miniatura
Fecha
2016-08-06
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer Nature
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
We prove comparison principles for quasilinear elliptic equations whose simplest model is (Formula presented.), where Δpu=div(|Du|p-2Du) is the p-Laplace operator with p> 2 , λ≥ 0 , H(x, ξ) : Ω × RN→ R is a Carathéodory function and Ω ⊂ RN is a bounded domain, N≥ 2. We collect several comparison results for weak sub- and super-solutions under different setting of assumptions and with possibly different methods. A strong comparison result is also proved for more regular solutions.
Descripción
Categorías UNESCO
Palabras clave
Citación
Leonori, T., Porretta, A. & Riey, G. Comparison principles for p-Laplace equations with lower order terms. Annali di Matematica 196, 877–903 (2017). https://doi.org/10.1007/s10231-016-0600-9
Centro
Facultades y escuelas::Facultad de Ciencias
Departamento
Matemáticas Fundamentales
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra