Publicación: Is anisotropy really the cause of BERT embeddings not being semantic?
| dc.contributor.author | Fuster Baggetto, Alejandro | |
| dc.contributor.author | Fresno Fernández, Víctor Diego | |
| dc.coverage.spatial | Abu Dhabi | |
| dc.coverage.temporal | 2022-12-11 | |
| dc.date.accessioned | 2025-12-03T15:19:35Z | |
| dc.date.available | 2025-12-03T15:19:35Z | |
| dc.date.issued | 2022-01-01 | |
| dc.description | The registered version of this conference paper, first published in "Findings of the Association for Computational Linguistics: EMNLP 2022, pages 4271–4281, Abu Dhabi, United Arab Emirates", is available online at the publisher's website: Association for Computational Linguistics, https://doi.org/10.18653/v1/2022.findings-emnlp.314 | |
| dc.description | La versión registrada de esta comunicación, publicada por primera vez en "Findings of the Association for Computational Linguistics: EMNLP 2022, pages 4271–4281, Abu Dhabi, United Arab Emirates", está disponible en línea en el sitio web del editor: Association for Computational Linguistics, https://doi.org/10.18653/v1/2022.findings-emnlp.314 | |
| dc.description.abstract | In this paper we conduct a set of experiments aimed to improve our understanding of the lack of semantic isometry in BERT, i.e. the lack of correspondence between the embedding and meaning spaces of its contextualized word representations. Our empirical results show that, contrary to popular belief, the anisotropy is not the root cause of the poor performance of these contextual models’ embeddings in semantic tasks. What does affect both the anisotropy and semantic isometry is a set of known biases: frequency, subword, punctuation, and case. For each one of them, we measure its magnitude and the effect of its removal, showing that these biases contribute but do not completely explain the phenomenon of anisotropy and lack of semantic isometry of these contextual language models. | en |
| dc.description.version | versión publicada | |
| dc.identifier.citation | Alejandro Fuster Baggetto and Victor Fresno. 2022. Is anisotropy really the cause of BERT embeddings not being semantic?. In Findings of the Association for Computational Linguistics: EMNLP 2022, pages 4271–4281, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics. | |
| dc.identifier.doi | https://doi.org/10.18653/v1/2022.findings-emnlp.314 | |
| dc.identifier.isbn | 978-1-959429-43-2 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14468/30998 | |
| dc.language.iso | en | |
| dc.publisher | Association for Computational Linguistics | |
| dc.relation.center | E.T.S. de Ingeniería Informática | |
| dc.relation.congress | Conference on Empirical Methods in Natural Language Processing | |
| dc.relation.department | Lenguajes y Sistemas Informáticos | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/deed.es | |
| dc.subject | 1203.04 Inteligencia artificial | |
| dc.title | Is anisotropy really the cause of BERT embeddings not being semantic? | en |
| dc.type | actas de congreso | es |
| dc.type | conference proceedings | en |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 80cd3492-0ff8-4c8e-a904-2858623c7fc1 | |
| relation.isAuthorOfPublication.latestForDiscovery | 80cd3492-0ff8-4c8e-a904-2858623c7fc1 |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- (Fuster et al, 2022) 2022.findings-emnlp.314_VICTOR DIEGO FRESNO.pdf
- Tamaño:
- 553.92 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.62 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción: