Publicación:
Predictive Analytics-Based Methodology Supported by Wireless Monitoring for the Prognosis of Roller-Bearing Failure

Cargando...
Miniatura
Fecha
2024-06-17
Autores
Primera, Ernesto
Cacereño, Andrés
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
Atribución 4.0 Internacional
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
MDPI
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
Roller mills are commonly used in the production of mining derivatives, since one of their purposes is to reduce raw materials to very small sizes and to combine them. This research evaluates the mechanical condition of a mill containing four rollers, focusing on the largest cylindrical roller bearings as the main component that causes equipment failure. The objective of this work is to make a prognosis of when the overall vibrations would reach the maximum level allowed (2.5 IPS pk), thus enabling planned replacements, and achieving the maximum possible useful life in operation, without incurring unscheduled corrective maintenance and unexpected plant shutdown. Wireless sensors were used to capture vibration data and the ARIMA (Auto-Regressive Integrated Moving Average) and Holt–Winters methods were applied to forecast vibration behavior in the short term. Finally, the results demonstrate that the Holt–Winters model outperforms the ARIMA model in precision, allowing a 3-month prognosis without exceeding the established vibration limit.
Descripción
Categorías UNESCO
Palabras clave
bearing failure, prognostics, data analytics, statistical modeling, predictive maintenance
Citación
Centro
Facultades y escuelas::E.T.S. de Ingenieros Industriales
Departamento
Ingeniería de Construcción y Fabricación
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra