Publicación: Desarrollo de herramientas virtuales para el estudio de validación de instalaciones de catenaria rígida
No hay miniatura disponible
Archivos
Fecha
2022
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
Atribución-NoComercial-SinDerivadas 4.0 Internacional
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
['Universidad Nacional de Educación a Distancia (España)', 'Universidad Politécnica de Madrid. Departamento de Ingeniería Mecánica']
Resumen
Los sistemas de electrificación en el ámbito ferroviario han evolucionado con el paso del tiempo adecuándose a las nuevas necesidades que han ido surgiendo conforme la tecnología avanza. La mayoría de adecuaciones de los sistemas de electrificación han ido enfocadas al aumento de la velocidad del tránsito ferroviario, de forma que se ha logrado establecer configuraciones de catenaria que permiten la circulación por encima de los 300 km/h. La capacidad tecnológica ha sido, por tanto, impulsora del desarrollo de cuadros normativos a nivel internacional enfocados a la interoperabilidad y a mejorar el aprovechamiento de las líneas de media y larga distancia, pero no considera las particularidades que pueden presentar los sistemas urbanos de transporte. Si se consideran concretamente los sistemas ferroviarios urbanos, podemos asegurar que el metro es el sistema con mayor arraigo en las ciudades con gran población. En este caso, aunque los sistemas flexibles de electrificación se han utilizado durante muchas décadas, parece que se imponen las actualizaciones en las que se implementa la catenaria rígida como sistema de transmisión de corriente. En este ámbito, la normativa aplicable parece dejar hasta el momento en un segundo plano los sistemas en los que se implementa la catenaria rígida, resultando las referencias a la misma claramente insuficientes incluso en las más recientes revisiones de algunos documentos. Es por ello que la generación y uso de herramientas de simulación establece un camino para el desarrollo de estudios relacionados con la dinámica del contacto entre pantógrafo y catenaria, enfocados principalmente en mejorar las capacidades de explotación al tiempo que se garantiza una correcta calidad en el proceso de captación de corriente. Se recoge en este artículo el procedimiento resumido de generación de una herramienta de simulación con la capacidad de aplicación de la misma tanto a sistemas flexibles de electrificación como a catenaria rígida. Los resultados obtenidos, principalmente enfocados al sistema rígido de electrificación, suponen una base de conocimiento amplia, que permite plantearse multitud de retos a la hora de mejorar la capacidad de estas instalaciones, tanto a nivel de explotación, como en la mejora de las estrategias de mantenimiento y cálculo de ciclos de vida. Podrá comprobarse también, que la limitada normativa aplicable a este entorno permite identificar de forma clara los campos sobre los que se deben centrar la mayoría de esfuerzos de investigación, de forma que pueda establecerse un marco común de trabajo para todos los agentes implicados desde la fase de diseño a la fase de explotación.
Electrification systems in the railway field have evolved over time, adapting to the new needs that have arisen as technology advances. Most of the adaptations of the electrification systems have been focused on increasing the speed of rail traffic, so that it has been possible to define contact line configurations that allow circulation above 300 km/h. Technological capacity has, therefore, been a driving force behind the development of standardization and regulatory frameworks at the international level focused on interoperability and improving the use of medium and long-distance lines, but it does not consider the particularities that urban transport systems may present. If urban rail systems are specifically considered, we can ensure that the metro is the system with the greatest mobility impact in cities with large populations. In this case, although flexible electrification systems have been used for many decades, it seems that the updates in which the rigid catenary is implemented as the current transmission system are imposed. In this area, the applicable standards seem to leave in the background the systems in which the rigid catenary is implemented, resulting in clearly insufficient references to it, even in the most recent revisions of some documents. That is why the generation and use of simulation tools establishes a path for the development of studies related to the contact dynamics between pantograph and catenary, mainly focused on improving exploitation capacities while ensuring correct quality in the process. current collection. This article includes the summary procedure for generating a simulation tool with the ability to apply it to both flexible electrification systems and rigid catenary systems. The results obtained, mainly focused on the rigid electrification system, represent a broad knowledge base, which allows a multitude of challenges to be considered when it comes to improving the capacity of these facilities, both at the exploitation level, and in the improvement of maintenance and calculation of life cycles. It can also be verified that the limited regulations applicable to this environment make it possible to clearly identify the fields on which most research efforts should be focused, so that a common framework can be established for all the agents involved from the from the design to the operational stages.
Electrification systems in the railway field have evolved over time, adapting to the new needs that have arisen as technology advances. Most of the adaptations of the electrification systems have been focused on increasing the speed of rail traffic, so that it has been possible to define contact line configurations that allow circulation above 300 km/h. Technological capacity has, therefore, been a driving force behind the development of standardization and regulatory frameworks at the international level focused on interoperability and improving the use of medium and long-distance lines, but it does not consider the particularities that urban transport systems may present. If urban rail systems are specifically considered, we can ensure that the metro is the system with the greatest mobility impact in cities with large populations. In this case, although flexible electrification systems have been used for many decades, it seems that the updates in which the rigid catenary is implemented as the current transmission system are imposed. In this area, the applicable standards seem to leave in the background the systems in which the rigid catenary is implemented, resulting in clearly insufficient references to it, even in the most recent revisions of some documents. That is why the generation and use of simulation tools establishes a path for the development of studies related to the contact dynamics between pantograph and catenary, mainly focused on improving exploitation capacities while ensuring correct quality in the process. current collection. This article includes the summary procedure for generating a simulation tool with the ability to apply it to both flexible electrification systems and rigid catenary systems. The results obtained, mainly focused on the rigid electrification system, represent a broad knowledge base, which allows a multitude of challenges to be considered when it comes to improving the capacity of these facilities, both at the exploitation level, and in the improvement of maintenance and calculation of life cycles. It can also be verified that the limited regulations applicable to this environment make it possible to clearly identify the fields on which most research efforts should be focused, so that a common framework can be established for all the agents involved from the from the design to the operational stages.
Descripción
Categorías UNESCO
Palabras clave
línea de contacto rígida, interacción pantógrafo-catenaria, operación ferroviaria
Citación
Centro
Facultades y escuelas::E.T.S. de Ingenieros Industriales
Departamento
Mecánica