Publicación:
Exploring the Power of Large Language Models: News Intention Detection using Adaptive Learning Prompting

dc.contributor.authorCaballero Hinojosa, Alberto
dc.contributor.directorRodrigo Yuste, Álvaro
dc.contributor.directorCenteno Sánchez, Roberto
dc.date.accessioned2024-05-20T12:40:27Z
dc.date.available2024-05-20T12:40:27Z
dc.date.issued2023
dc.description.abstractIn today’s interconnected global landscape, political news wields significant influence in shaping voter perceptions. Political news stands as a primary source of information for citizens in democratic societies. Understanding the intentions underlying news articles is indispensable for ensuring transparency in political discourse. It empowers the public to make informed decisions and to hold media platforms accountable for the information they disseminate, whether directly or indirectly. Precise identification of news intentions holds the potential to safeguard democratic processes, forming the core focus of this Master’s thesis. Accurate identification of news intentions assumes a central role in Natural Language Processing (NLP) for effective information analysis and categorization. This research project delves into the innovative concept of “Adaptive Learning Prompting”. It harnesses the formidable capabilities of Large Language Models (LLMs) for efficient news intention classification through iterative prompt engineering, with a specific emphasis on resource-constrained scenarios. Employing a dynamic evaluation methodology conducted in iterative batches, this research meticulously tracks model performance. Through trend analysis, the evolution of the proposed model architecture emerges as statistically significant, effectively demonstrating the adaptability inherent in this proposed approach. In summary, this Master’s thesis serves as a testament to the potential of LLMs in adaptive news intention identification. Particularly noteworthy is the “Adaptive Learning Prompting” strategy. While specific performance metrics may exhibit variations, the adaptive approach underscores the feasibility of iterative feedback prompting for operational enhancements, especially in resource-scarce scenarios. These findings transcend the realm of news intention analysis, offering broader applications in NLP, while shedding light on the reasoning capabilities intrinsic to LLMs, thereby amplifying their utility.en
dc.description.versionversión final
dc.identifier.urihttps://hdl.handle.net/20.500.14468/14712
dc.language.isoen
dc.publisherUniversidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Lenguajes y Sistemas Informáticos
dc.relation.centerE.T.S. de Ingeniería Informática
dc.relation.degreeMáster Universitario en Tecnologías del Lenguaje (UNED)
dc.relation.departmentLenguajes y Sistemas Informáticos
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.titleExploring the Power of Large Language Models: News Intention Detection using Adaptive Learning Promptinges
dc.typetesis de maestríaes
dc.typemaster thesisen
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Caballero_Alberto_TFM.pdf
Tamaño:
626.06 KB
Formato:
Adobe Portable Document Format