Publicación: Continuous and discrete periodic asymptotic behavior of solutions to a competitive chemotaxis PDEs system
dc.contributor.author | Negreanu, Mihaela | |
dc.contributor.author | Vargas Ureña, Antonio Manuel | |
dc.date.accessioned | 2025-01-10T10:03:09Z | |
dc.date.available | 2025-01-10T10:03:09Z | |
dc.date.issued | 2021-04 | |
dc.description | This is a Submitted Manuscript of an article published by Elsevier in "Communications in Nonlinear Science and Numerical Simulation, 95, 105592", available at: https://doi.org/10.1016/j.cnsns.2020.105592 | |
dc.description | Este es el manuscrito enviado del artículo publicado por Elsevier en "Communications in Nonlinear Science and Numerical Simulation, 95, 105592", disponible en línea: https://doi.org/10.1016/j.cnsns.2020.105592 | |
dc.description.abstract | In this paper we study the continuous and full discrete versions of a parabolic-parabolic-elliptic system with periodic terms that serves as a model for some chemotaxis phenomena. This model appears naturally in the interaction of two biological species and a chemical. The presence of the periodic terms has a strong impact on the behavior of the solutions. Some conditions on the system’s data are given that guarantee the global existence of solutions that converge to periodical solutions of an associated ODE’s system. Further, we analyze the discretized version of the model using a Generalized Finite Difference Method (GFDM) and we confirm that the properties of the continuous model are also preserved for the resulting discrete model. To this end, we prove the conditional convergence of the numerical model and study some practical examples. | en |
dc.description.version | versión original | |
dc.identifier.citation | Negreanu, M. & Vargas A.M. (2021). Continuous and discrete periodic asymptotic behavior of solutions to a competitive chemotaxis PDEs system. Communications in Nonlinear Science and Numerical Simulation, 95. https://doi.org/10.1016/J.CNSNS.2020.105592 | |
dc.identifier.doi | https://doi.org/10.1016/j.cnsns.2020.105592 | |
dc.identifier.issn | 1007-5704 | eISSN 1878-7274 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/25173 | |
dc.journal.title | Communications in Nonlinear Science and Numerical Simulation | |
dc.journal.volume | 95 | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.relation.center | Facultades y escuelas::E.T.S. de Ingenieros Industriales | |
dc.relation.department | Matemática Aplicada I | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.subject | 12 Matemáticas | |
dc.subject.keywords | Chemotaxis | en |
dc.subject.keywords | Asymptotic stability of solutions | en |
dc.subject.keywords | Lotka Volterra system | en |
dc.subject.keywords | Periodic solutions | en |
dc.subject.keywords | Generalized Finite Di erence | en |
dc.subject.keywords | Method | en |
dc.subject.keywords | Conditional Convergence | en |
dc.title | Continuous and discrete periodic asymptotic behavior of solutions to a competitive chemotaxis PDEs system | en |
dc.type | artículo | es |
dc.type | journal article | en |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6d700201-394b-4442-b0f1-dbe2a6703081 | |
relation.isAuthorOfPublication.latestForDiscovery | 6d700201-394b-4442-b0f1-dbe2a6703081 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- ContinuousDiscrete_ANTONIO MANUEL VARGAS.pdf
- Tamaño:
- 669.79 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.62 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción: