Fecha
2023-01
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
American Institute of Physics

Citas

0 citas en WOS
0 citas en
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
Constitutive models for the dynamics of polymer solutions traditionally rely on closure relations for the extra stress or related microstructural variables (e.g., conformation tensor) linking them to flow history. In this work, we study the eigendynamics of the conformation tensor within the GENERIC framework in mesoscopic computer simulations of polymer solutions to separate the effects of nonaffine motion from other sources of non-Newtonian behavior. We observe that nonaffine motion or slip increases with both the polymer concentration and the polymer chain length. Our analysis allows to uniquely calibrate a mixed derivative of the Gordon–Schowalter type in macroscopic models based on a micro-macromapping of the dynamics of the polymeric system. The presented approach paves the way for better polymer constitutive modeling in multiscale simulations of polymer solutions, where different sources of non-Newtonian behavior are modelled independently.
Descripción
La versión registrada de este artículo, publicado por primera vez en Journal of Rehology 67, 253 (2023), está disponible en línea en el sitio web del editor: https://doi.org/10.1122/8.0000527. The registered version of this article, first published in Journal of Rhehology 67, 253 (2023), is available online from the publisher's website: https://doi.org/10.1122/8.0000527.
Categorías UNESCO
Palabras clave
Citación
Non-affine motion and selection of slip coefficient in constitutive modelling of polymeric solutions using a mixed derivative, D. Nieto Simavilla, P. Español, and M. Ellero, Journal of Rehology 67, 253 (2023); https://doi.org/10.1122/8.0000527
Centro
Facultad de Ciencias
Departamento
Física Fundamental
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra