Publicación:
Comparative Study of Supervised Learning and Metaheuristic Algorithms for the Development of Bluetooth-Based Indoor Localization Mechanisms

Cargando...
Miniatura
Fecha
2019-02-15
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Institute of Electrical and Electronics Engineers
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
The development of the Internet of Things (IoT) benefits from 1) the connections between devices equipped with multiple sensors; 2) wireless networks and; 3) processing and analysis of the gathered data. The growing interest in the use of IoT technologies has led to the development of numerous diverse applications, many of which are based on the knowledge of the end user's location and profile. This paper investigates the characterization of Bluetooth signals behavior using 12 different supervised learning algorithms as a first step toward the development of fingerprint-based localization mechanisms. We then explore the use of metaheuristics to determine the best radio power transmission setting evaluated in terms of accuracy and mean error of the localization mechanism. We further tune-up the supervised algorithm hyperparameters. A comparative evaluation of the 12 supervised learning and two metaheuristics algorithms under two different system parameter settings provide valuable insights into the use and capabilities of the various algorithms on the development of indoor localization mechanisms.
Descripción
Categorías UNESCO
Palabras clave
Indoor positioning, fingerprinting, Bluetooth, classification model, signal processing, received signal strength indication, multipath fading, transmission power, benchmark, metaheuristic optimization algorithms
Citación
Centro
E.T.S. de Ingeniería Informática
Departamento
Inteligencia Artificial
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra