Publicación: Qualitative analysis through visual interpretability techniques of neural network models for mammography classification
Cargando...
Fecha
2021-09-01
Autores
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
Atribución-NoComercial-SinDerivadas 4.0 Internacional
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial
Resumen
Nowadays, research in the field of artificial intelligence is focusing on the explainability of the developed algorithms, mainly neural networks. This trend is known as XAI and brings certain advantages such as increased confidence in the decision-making process, improved capacity for error analysis, verification of results and possibility of model refinement, among others. In this work we have focused on interpreting the predictions of recently developed deep learning models through different visualization techniques. The use case we introduce is the detection of breast cancer through the classification of mammographies, since the medical field is widely benefited by the contributions of XAI methods. Furthermore, the target neural networks are based on recent and poorly explored architectures. These are the Vision Transformer model, built through attention blocks, and EfficientNet, designed to improve the performance of convolutional networks.
Descripción
Categorías UNESCO
Palabras clave
Explainable Artificial Intelligence, interpretability, Deep Learning, EfficientNet, vision transformer, mammography
Citación
Centro
Facultades y escuelas::E.T.S. de Ingeniería Informática
Departamento
Inteligencia Artificial