Persona: Pedrero Moya, José Ignacio
Cargando...
Dirección de correo electrónico
ORCID
0000-0001-8354-2144
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Pedrero Moya
Nombre de pila
José Ignacio
Nombre
6 resultados
Resultados de la búsqueda
Mostrando 1 - 6 de 6
Publicación Analytical model of meshing stiffness, load sharing, and transmission error for internal spur gears with profile modification(Elsevier, 2024-07) Pedrero Moya, José Ignacio; Sánchez Sánchez, Miryam Beatriz; Pleguezuelos González, Miguel; ElsevierThe influence of the teeth geometry on the load distribution, transmission error, and meshing stiffness of internal spur gears is very similar to that of external gears. Therefore, the formulation of the models for strength and dynamic calculations for internal and external gears is also similar. However, the internal gears have usually greater values of the contact ratio, frequently above 1.8, even 1.9. In these cases, the lengthening of the contact interval due to the elastic deflections of the teeth may result in an effective contact ratio greater than 2, with the subsequent changes in the load sharing and transmission error. These changes are not properly described by the theoretical models for high contact ratio spur gears. In this paper, a model of load sharing, quasi-static transmission error, and time-varying meshing stiffness for internal spur gears with profile modification is resented, which has been applied to low contact ratio internal gears which, due to the transmitted load, become high contact ratio internal gears. The influence of the variations of the transmitted load on the load capacity is also studied.Publicación Simulation and validation of the transmission error, meshing stiffness, and load sharing of planetary spur gear transmissions(Elsevier, 2024-11-15) Pedrero Moya, José Ignacio; Sánchez Espiga, Javier; Sánchez Sánchez, Miryam Beatriz; Pleguezuelos González, Miguel; Fernández del Rincón, Alfonso; Viadero, Fernando; ElsevierAlthough the load sharing between planets of sequentially phased planetary gear transmissions has been studied in the past, the required solving techniques based on the Finite Element Method result in long time consuming and high computational cost. This limits the possibilities of undertaking extensive studies that take into consideration a high number of cases allowing optimal solutions to be sought or general conclusions drawn. In addition, the determination of the curves of transmission error, time-varying mesh stiffness, and load sharing among tooth pairs in simultaneous contact are also complicated. In this work an analytical model has been developed for the simulation of the time-varying mesh stiffness, quasi-static transmission error, and load sharing ratio between planets and tooth pairs of planetary spur gear transmissions. It is based on similar models for external and internal spur gears previously developed and has been validated by comparison with a hybrid model based on the Finite Element Method and theoreticexperimental correlation.Publicación Modelo de rigidez de engrane, error de transmisión y reparto de carga para engranajes helicoidales con modificación de perfil(Universidad Nacional de Educación a Distancia (España), Universidad Politécnica de Madrid. Departamento de Ingeniería Mecánica, 2022) Pedrero Moya, José Ignacio; Pleguezuelos González, Miguel; Sánchez Sánchez, Miryam BeatrizPara la simulación del contacto entre dientes de engranajes helicoidales es necesaria una precisa determinación de la longitud de la línea de contacto, que es variable a lo largo del ciclo de engrane. Esta variación viene influenciada no sólo por la inclinación de las líneas, sino también por su alargamiento debido al adelanto del inicio del contacto inducido por las deformaciones de los dientes bajo carga, así como por la reducción que en dicha longitud provoca la modificación del perfil. Todo ello influye de manera determinante en la rigidez de engrane, el error de transmisión y el reparto de carga, factores que tienen influencia decisiva en el comportamiento dinámico de la transmisión. En este trabajo se presenta un modelo aproximado, sencillo y eficiente, para la simulación de la rigidez de engrane, el error de transmisión y el reparto de carga para engranajes helicoidales con modificación de perfilPublicación Proyecto colaborativo para la mejora de la docencia en el análisis cinemático y dinámico de levas mediante hojas de cálculo(Universidad Nacional de Educación a Distancia (España), Universidad Politécnica de Madrid. Departamento de Ingeniería Mecánica, 2022) Castejón López, Miguel; Pleguezuelos González, Miguel; Sánchez Sánchez, Miryam Beatriz; Pedrero Moya, José IgnacioEl presente artículo expone una experiencia docente para la mejora en la docencia del análisis cinemático y dinámico de levas mediante el desarrollo de un proyecto colaborativo entre los estudiantes de la asignatura, basado en la realización de una aplicación en Excel por su sencillez de manejo y capacidad de cálculo matricial. Se aborda el estudio de los diversos tipos de levas, programas de movimiento y se analiza la respuesta cinemática y dinámica del sistema. Igualmente se aborda el dimensionamiento atendiendo a restricciones geométricas como el ángulo de presión y radio de curvatura. Todo el conjunto de tareas es realizado por los estudiantes de la Escuela de Ingenieros Industriales de la UNED. Esta experiencia se engloba en un conjunto de proyectos similares aplicados a la docencia de la teoría de elementos de máquinas para la mejora en el rendimiento académico de los estudiantes implicados en estas actividades.Publicación Influence of profile modification on the transmission error of spur gears under surface wear(Elsevier, 2024-01) Sánchez Sánchez, Miryam Beatriz; Pleguezuelos González, Miguel; Pedrero Moya, José Ignacio; ElsevierThe load distribution, transmission error, and time-varying meshing stiffness of spur gears are all influenced by the teeth dimensions and profiles shape. Any modification on the teeth geometry, as a profile relief frequently used to avoid the mesh-in impact, will affect all these parameters and the entire dynamic behavior of the gearset. In addition, due to the friction between contacting surfaces, wear arises at the teeth flanks. This causes the shape of the meshing profiles to change, which will affect the load distribution and the transmission error for the subsequent meshing cycles. And this new load distribution causes a surfaces wear different form that of the previous meshing cycle. Consequently, the wear depth increase is different at any contact point —because the load and sliding velocity are different— and at any meshing cycle as well —because the load distribution changes with the accumulated wear—. And all the above is also influenced by the profile modification the teeth were manufactured with. In this paper, a simple, analytic model of meshing stiffness, load sharing, and transmission error for spur gears with profile modifications including the influence of surfaces wear is presented. The evolution of the transmission error with the number of wear cycles is studied, and the optimal profile modification for minimizing the dynamic load induced by the transmission error is investigated.Publicación Analysis of the tooth-root stress of external spur gears with high effective contact ratio(Elsevier, 2024-11-15) Pedrero Moya, José Ignacio; Sánchez Sánchez, Miryam Beatriz; Pleguezuelos González, Miguel; Fuentes Aznar, Alfonso; ElsevierFor spur gears with contact ratio close to 2, the extension of the contact interval resulting from loaded tooth deflections and local contact deformations may result in an effective contact ratio above 2. In these cases, the load is transmitted by at least two tooth-pairs, the maximum load and tooth-root stress decrease, and therefore the calculation methods of the gear rating Standards ISO and AGMA provide very conservative results. In this work, two models are applied to the calculation of the tooth-root stress of load-induced high contact ratio external gears: (i) an analytic model of load sharing, based on the minimum energy method, and (ii) a finite element model, which validates the results obtained from the previous model. Obtained values of the stress are compared with those provided by ISO and AGMA rating methods, which do not account for the stress reduction due to the higher contact ratio. A new modification coefficient is proposed to correct these conservative values, which allows the AGMA and ISO geometry factors to remain as no load-dependent factors and keep their actual calculation methods and significance.