Persona:
Español Garrigos, José

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0001-5263-2817
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Español Garrigos
Nombre de pila
José
Nombre

Resultados de la búsqueda

Mostrando 1 - 7 de 7
  • Publicación
    Solution to the plateau problem in the Green-Kubo formula
    (American Physical Society, 2019-02-19) Torre Rodríguez, Jaime Arturo de la; Duque Zumajo, Diego; Español Garrigos, José
    Transport coefficients appearing in Markovian dynamic equations for coarse-grained variables have microscopic expressions given by Green-Kubo formulas. These formulas may suffer from the well-known plateau problem. The problem arises because the Green-Kubo running integrals decay as the correlation of the coarse-grained variables themselves. The usual solution is to resort to an extreme timescale separation, for which the plateau problem is minor. Within the context of Mori projection operator formulation, we offer an alternative expression for the transport coefficients that is given by a corrected Green-Kubo expression that has no plateau problem by construction. The only assumption is that the Markovian approximation is valid in such a way that transport coefficients can be defined, even in the case that the separation of timescales is not extreme.
  • Publicación
    Boundary conditions derived from a microscopic theory of hydrodynamics near solids
    (American Institute of Physics, 2019-04-08) Camargo-Trillos, Diego; Torre Rodríguez, Jaime Arturo de la; Delgado Buscalioni, Rafael; Chejne, Farid; Español Garrigos, José
    The theory of nonlocal isothermal hydrodynamics near a solid object derived microscopically in the study by Camargo et al. [J. Chem. Phys. 148, 064107 (2018)] is considered under the conditions that the flow fields are of macroscopic character. We show that in the limit of macroscopic flows, a simple pillbox argument implies that the reversible and irreversible forces that the solid exerts on the fluid can be represented in terms of boundary conditions. In this way, boundary conditions are derived from the underlying microscopic dynamics of the fluid-solid system. These boundary conditions are the impenetrability condition and the Navier slip boundary condition. The Green-Kubo transport coefficients associated with the irreversible forces that the solid exert on the fluid appear naturally in the slip length. The microscopic expression for the slip length thus obtained is shown to coincide with the one provided originally by Bocquet and Barrat [Phys. Rev. E 49, 3079 (1994)].
  • Publicación
    Microscopic Slip Boundary Conditions in Unsteady Fluid Flows
    (American Physical Society, 2019-12-31) Torre Rodríguez, Jaime Arturo de la; Duque Zumajo, Diego; Camargo-Trillos, Diego; Español Garrigos, José
    An algebraic tail in the Green-Kubo integral for the solid-fluid friction coefficient hampers its use in the determination of the slip length. A simple theory for discrete nonlocal hydrodynamics near parallel solid walls with extended friction forces is given. We explain the origin of the algebraic tail and give a solution of the plateau problem in the Green-Kubo expressions. We derive the slip boundary condition with a microscopic expression for the slip length and the hydrodynamic wall position, and assess it through simulations of an unsteady plug flow.
  • Publicación
    The role of thermal fluctuations in the motion of a free body
    (ELSEVIER, 2024) Español Garrigos, José; Thachuk, Mark E.; Torre Rodríguez, Jaime Arturo de la
    The motion of a rigid body is described in Classical Mechanics with the venerable Euler’s equations which are based on the assumption that the relative distances among the constituent particles are fixed in time. Real bodies, however, cannot satisfy this property, as a consequence of thermal fluctuations. We generalize Euler’s equations for a free body in order to describe dissipative and thermal fluctuation effects in a thermodynamically consistent way. The origin of these effects is internal, i.e. not due to an external thermal bath. The stochastic differential equations governing the orientation and central moments of the body are derived from first principles through the theory of coarse-graining. Within this theory, Euler’s equations emerge as the reversible part of the dynamics. For the irreversible part, we identify two distinct dissipative mechanisms; one associated with diffusion of the orientation, whose origin lies in the difference between the spin velocity and the angular velocity, and one associated with the damping of dilations, i.e. inelasticity. We show that a deformable body with zero angular momentum will explore uniformly, through thermal fluctuations, all possible orientations. When the body spins, the equations describe the evolution towards the alignment of the body’s major principal axis with the angular momentum vector. In this alignment process, the body increases its temperature. We demonstrate that the origin of the alignment process is not inelasticity but rather orientational diffusion. The theory also predicts the equilibrium shape of a spinning body.
  • Publicación
    Non-local viscosity from the Green–Kubo formula
    (American Institute of Physics (AIP), 2020-05-07) Duque Zumajo, Diego; Torre Rodríguez, Jaime Arturo de la; Español Garrigos, José; https://orcid.org/0000-0001-7055-5835; https://orcid.org/0000-0002-1657-0820
    We study through MD simulations the correlation matrix of the discrete transverse momentum density field in real space for an unconfined Lennard-Jones fluid at equilibrium. Mori theory predicts this correlation under the Markovian approximation from the knowledge of the non-local shear viscosity matrix, which is given in terms of a Green–Kubo formula. However, the running Green–Kubo integral for the non-local shear viscosity does not have a plateau. By using a recently proposed correction for the Green–Kubo formula that eliminates the plateau problem [Español et al., Phys. Rev. E 99, 022126 (2019)], we unambiguously obtain the actual non-local shear viscosity. The resulting Markovian equation, being local in time, is not valid for very short times. We observe that the Markovian equation with non-local viscosity gives excellent predictions for the correlation matrix from a time at which the correlation is around 80% of its initial value. A local in space approximation for the viscosity gives accurate results only after the correlation has decayed to 40% of its initial value.
  • Publicación
    Stochastic Dissipative Euler’s equations for a free body
    (De Gruyter Brill, 2024-11-05) Torre Rodríguez, Jaime Arturo de la; Sánchez Rodríguez, Jesús; Español Garrigos, José
    Intrinsic thermal fluctuations within a real solid challenge the rigid body assumption that is central to Euler’s equations for the motion of a free body. Recently, we have introduced a dissipative and stochastic version of Euler’s equations in a thermodynamically consistent way (European Journal of Mechanics – A/Solids 103, 105,184 (2024)). This framework describes the evolution of both orientation and shape of a free body, incorporating internal thermal fluctuations and their concomitant dissipative mechanisms. In the present work, we demonstrate that, in the absence of angular momentum, the theory predicts that the principal axes unit vectors of a body undergo an anisotropic Brownian motion on the unit sphere, with the anisotropy arising from the body’s varying moments of inertia. The resulting equilibrium time correlation function of the principal eigenvectors decays exponentially. This theoretical prediction is confirmed in molecular dynamics simulations of small bodies. The comparison of theory and equilibrium MD simulations allow us to measure the orientational diffusion tensor. We then use this information in the Stochastic Dissipative Euler’s Equations, to describe a non-equilibrium situation of a body spinning around the unstable intermediate axis. The agreement between theory and simulations is excellent, offering a validation of the theoretical framework
  • Publicación
    Internal dissipation in the Dzhanibekov effect
    (Elsevier, 0001-08-20) Torre Rodríguez, Jaime Arturo de la; Español Garrigos, José
    The Dzhanibekov effect is the phenomenon by which triaxial objects like a spinning wing bolt may continuously flip their rotational axis when initially spinning around the intermediate axis of inertia. This effect is closely related to the Tennis Racket theorem that establishes that the intermediate axis of inertia is unstable. Over time, however, dissipation ensures that a torque free spinning body will eventually rotate around its major axis, in a process called precession relaxation, which counteracts the Dzhanibekov effect. Euler’s equations for a rigid body effectively describe the Dzhanibekov effect, but cannot account for the precession relaxation effect. A dissipative generalization of Euler’s equations displays two dissipative mechanisms: orientational diffusion and viscoelasticity. Here we show through numerical simulations of the dissipative Euler’s equations that orientational diffusion, rather than viscoelasticity, primarily drives precession relaxation and effectively suppresses the Dzhanibekov effect.