Persona:
García Arcos, Carlos

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0003-0632-6901
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
García Arcos
Nombre de pila
Carlos
Nombre

Resultados de la búsqueda

Mostrando 1 - 6 de 6
  • Publicación
    Información de los Departamentos: Departamento de Física de los Materiales
    (Universidad Nacional de Educación a Distancia (España). Facultad de Ciencias, 2008-01-01) Carreras Béjar, Carmen; García Arcos, Carlos
  • Publicación
    Información de los Departamentos: Departamento de Física de los Materiales
    (Universidad Nacional de Educación a Distancia (España). Facultad de Ciencias, 2012-01-01) Carreras Béjar, Carmen; García Arcos, Carlos
  • Publicación
    Información de los Departamentos : Dpto. de Física de los Materiales
    (Universidad Nacional de Educación a Distancia (España). Facultad de Ciencias, 2011-01-01) Yuste Llandres, Manuel; García Arcos, Carlos
  • Publicación
    Información de los Departamentos: Departamento de Física de los Materiales
    (Universidad Nacional de Educación a Distancia (España). Facultad de Ciencias, 2013-01-01) Carreras Béjar, Carmen; García Arcos, Carlos
  • Publicación
    Energetics and structural characterization of Poly(trifluoroethylene) from first principles calculations
    (ELSEVIER, 2025-10-27) García Arcos, Carlos; Toledano Sanz, Óscar; Sanz Monasterio, Mikel; Gálvez González, Óscar
    In this paper a comprehensive first-principles investigation of the structural and energetic stability of poly(trifluoroethylene) (PTrFE) is reported. Using density functional theory (DFT), we systematically analyze the conformational energetics of PTrFE across three structural levels: isolated molecules, infinite polymer strands, and crystalline solids. Various tacticities—atactic, isotactic, and syndiotactic—are explored for each of the known PVDF phases (𝛼, 𝛽, 𝛾) and the 31 helical structure. Our results reveal that while the isotactic 31 helix is the most stable conformation, planar 𝛽 and 𝛾 phases become energetically favorable in atactic or syndiotactic crystalline environments, where intermolecular interactions and steric minimization dominate. In addition, simulated X-ray diffraction (XRD) patterns are compared with those found in the literature, revealing characteristic features to distinguish different phases and chain arrangements.
  • Publicación
    Study of the Crystal Structure and Hydrogen Bonding during Cold Crystallization of Poly(trimethylene 2,5-furandicarboxylate)
    (American Chemical Society, 2024-02-25) Toledano Sanz, Óscar; Gálvez González, Óscar; Sanz Monasterio, Mikel; García Arcos, Carlos; Rebollar, Esther; Nogales, Aurora; García Gutiérrez, Mari Cruz; Santoro, Gonzalo; Irska, Izabela; Paszkiewicz, Sandra; Szymczyk, Anna; Ezquerra, Tiberio; https://orcid.org/0000-0002-2494-3551; https://orcid.org/0000-0002-3604-1512; https://orcid.org/0000-0003-4751-2209; https://orcid.org/0000-0002-5521-1847; https://orcid.org/0000-0002-9670-6395; https://orcid.org/0000-0001-9966-519X
    Here, we present a detailed description of the in situ isothermal crystallization of poly(trimethylene 2,5-furandicarboxylate)(PTF) as revealed by real-time Fourier transform infrared spectroscopy (FTIR) and grazing incidence wide-angle X-ray scattering (GIWAXS). From FTIR experiments, the evolution of hydrogen bonding with crystallization time can be monitored in real time, while from GIWAXS, crystal formation can be followed. Density functional theory (DFT) calculations have been used to simulate FTIR spectra for different theoretical structures, enabling a precise band assignment. In addition, based on DFT ab initio calculations, the influence of hydrogen bonding on the evolution with crystallization time can be understood. Moreover, from DFT calculations and comparison with both FTIR and GIWAXS experiments, a crystalline structure of poly(trimethylene 2,5-furandicarboxylate) is proposed. Our results demonstrate that hydrogen bonding is present in both the crystalline and the amorphous phases and its rearrangement can be considered as a significant driving force for crystallization of poly(alkylene 2,5-furanoate)s.