Persona: García Domínguez, Amabel
Cargando...
Dirección de correo electrónico
ORCID
0000-0001-5826-4904
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
García Domínguez
Nombre de pila
Amabel
Nombre
4 resultados
Resultados de la búsqueda
Mostrando 1 - 4 de 4
Publicación Metodología para la optimización de piezas producidas por fabricación aditiva en estrategias de "mass customization"(Universidad Nacional de Educación a Distancia (España). Escuela Internacional de Doctorado. Programa de Doctorado en Tecnologías Industriales, 2019-12-16) García Domínguez, Amabel; Sebastián Pérez, Miguel Ángel; Claver Gil, JuanLas tecnologías de fabricación aditiva suponen un cambio de paradigma respecto de las tecnologías de fabricación tradicionales al producir las piezas mediante capas sucesivas en las que se deposita material hasta completar la geometría final. Esta forma de operar ofrece diversas ventajas frente los procesos tradicionales, como puede ser la obtención de la geometría final en un único proceso, pero quizás la más significativa es la libertad geométrica que introducen en el proceso de diseño. El diseño de un producto debe ser consciente de las restricciones que los procesos productivos imponen, ignorarlos conduciría al fracaso en la fase de materialización. En ese sentido la fabricación aditiva elimina restricciones de las tecnologías anteriores y dota de gran libertad a los diseños pudiendo obtener geometrías muy complejas antes imposibles y muy especialmente en lo que se refiere a las cavidades interiores. Tanto es así que la fabricación aditiva introduce también la idea de relleno, aplicable a las partes entendidas como sólidas de la pieza y que tradicionalmente son macizas. Este nuevo nivel de libertad geométrica permite llevar a otro nivel el concepto de optimización de los diseños, dado que la complejidad de la geometría resultante de la optimización no es un problema, a la vez que se multiplica el número de soluciones factibles. La investigación desarrollada en esta tesis doctoral parte del contexto actual, en el que, por un lado, las distintas tecnologías de fabricación aditiva existentes han logrado mayor presencia y reconocimiento en el ámbito productivo, y por otro, las herramientas de diseño y de optimización tienen capacidad para responder a los nuevos retos que las nuevas capacidades de estos medios productivos plantea a los diseñadores. Así, esta tesis doctoral busca desarrollar una metodología de optimización, basada en la programación visual de Grasshopper y con un flujo de datos continuo, que permita optimizar piezas obtenidas mediante cualquier tecnología aditiva y que contribuya o pueda integrarse en estrategias de mass customization o customización en masa. Dentro de la optimización multiobjetivo que se plantea, destaca la integración del diseño paramétrico de la pieza, así como de la optimización estructural de su volumetría, su relleno y su superficie. De este modo, las formas no vienen preestablecidas por el diseñador, sino que se obtienen como respuesta al problema de optimización de forma generativa y el relleno no responde a patrones prestablecidos, sino a geometrías definidas por el diseñador y cuyos elementos o partes se dimensionan a lo largo de la pieza para dar respuesta a solicitaciones mecánicas de distinta intensidad. El estudio de caso incluido en la investigación desarrollada valida la metodología propuesta desde un planteamiento que pone de manifiesto su utilidad en estrategias de mass customization, incorporando al modelo optimizado la previa adaptación del diseño a las características y necesidades particulares de un usuario concreto.Publicación Cost-effective fully 3D-printed on-drop electrochemical sensor based on carbon black/polylactic acid: a comparative study with screen-printed sensors in food analysis(Springer, 2024) Monago Maraña, Olga; Aouladtayib-Boulakjar, Nadia; Zapardiel Palenzuela, Antonio; García Domínguez, Amabel; Ayllón Pérez, Jorge; Rodríguez Prieto, Álvaro; Claver Gil, Juan; Camacho López, Ana María; González Crevillén, Agustín3D-printing technology allows scientist to fabricate easily electrochemical sensors. Until now, these sensors were designed employing a large amount of material, which increases the cost and decreases manufacturing throughput. In this work, a low-cost 3D-printed on-drop electrochemical sensor (3D-PES) was fully manufactured by fused filament fabrication, minimizing the number of printing layers. Carbon black/polylactic acid filament was employed, and the design and several printing parameters were optimized to yield the maximum electroanalytical performance using the minimal amount of material. Print speed and extrusion width showed a critical influence on the electroanalytical performance of 3D-PES. Under optimized conditions, the fabrication procedure offered excellent reproducibility (RSD 1.3% in working electrode diameter), speed (< 3 min/unit), and costs (< 0.01 $ in material cost). The 3D-PES was successfully applied to the determination of phloridzin in apple juice. The analytical performance of 3D-PES was compared with an equivalent commercial on-drop screen-printed electrode, yielding similar precision and accuracy but lower sensitivity. However, 3D-PES provides interesting features such as recyclability, biodegradability, low-cost, and the possibility of being manufactured near the point of need, some of which meets several demands of Green Chemistry. This cost-effective printing approach is a green and promising alternative for manufacturing disposable and portable electroanalytical devices, opening new possibilities not only in on-site food analysis but also in point-of-care testing.Publicación Analysis of General and Specific Standardization Developments in Additive Manufacturing From a Materials and Technological Approach(IEEE Xplore, 2020-06-25) García Domínguez, Amabel; Claver Gil, Juan; Sebastián Pérez, Miguel Ángel; Camacho López, Ana MaríaAdditive manufacturing processes and products are very present in the current productive landscape, and in fact these technologies have been one of the most intensively studied and improved during the last years; however, there is still no defined and homogeneous regulatory context for this field. In this work, a thorough review of the main general and specific regulatory developments in design, materials and processes standards for additive manufacturing has been carried out, with special attention to the standards for mechanical characterization of polymer-based products. In many cases standards developed for other productive contexts are identified as recommended references, and some contradictory trends can be identified when different documents and previous experiences are consulted. Thus, as it is logical considering that all these technologies are involved in an intensive and continuous evolution process, there is a certain lack of clarity regarding the standards to be considered. This work aims to contribute to clarify the current standardization context in additive manufacturing and provide some guidelines for the identification of appropriate standards. The paper also emphasizes that the key for next regulatory developments in mechanical testing is to develop standards that consider particular AM processes along with materials. Moreover, a great gap between available standard about additive technologies based on metallic materials and polymer materials during the last years has been detected. Finally, the provided overview is considered of interest as support for research and practice in additive manufacturing, and both in intensive productive scenarios and for particular users and makers.Publicación Últimas tendencias en el ámbito científico sobre procesos de fabricación aplicados a la construcción de aeronaves(['Universidad Nacional de Educación a Distancia (España)', 'Universidad Politécnica de Madrid. Departamento de Ingeniería Mecánica'], 2022) Blanco Gómez, David; Sáenz De Pipaón, José Manuel; Rubio Alvir, Eva María; García Domínguez, AmabelLa industria aeroespacial se ha centrado tradicionalmente en reducir la masa de las aeronaves mediante el uso de materiales estructurales ligeros, pero este tipo de materiales y los procesos de fabricación y mecanizado asociados están en continua evolución. Por ello, el presente estudio busca responder a la pregunta de cuáles son las últimas tendencias en procesos de fabricación y mecanizado orientados a la fabricación y ensamblaje de aeronaves. Para ello se realiza una revisión sistemática de la literatura científica asociada de los últimos 10 años, concluyendo la tendencia actual hacia el estudio de aleaciones de titanio, superaleaciones de níquel y aceros, incluidas en un 22%, 16% y 14% de los estudios respectivamente. También existe interés predominante por la fabricación aditiva presente en el 52% de los estudios, superior al 32% de estudios sobre fabricación sustractiva, revisándose ambas tecnologías y presentado los resultados en tablas resumen como soporte a investigadores interesados.