Persona: Pinos Sánchez, María Elena
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-5323-6602
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Pinos Sánchez
Nombre de pila
María Elena
Nombre
2 resultados
Resultados de la búsqueda
Mostrando 1 - 2 de 2
Publicación Physiological and brain alterations produced by high-fat diet in male and female rats can be modulated by increased levels of estradiol during critical periods of development(Taylor and Francis Online, 2017-07-11) Carrillo Urbano, Beatriz; Collado Guirao, Paloma; Díaz, Francisca; Chowen, Julie A.; Pérez Izquierdo, María Ángeles; Pinos Sánchez, María ElenaBackground: Overnutrition due to a high-fat diet (HFD) can increase the vulnerability of the metabolic system to maladjustments. Estradiol has an inhibitory role on food intake and this hormone has demonstrated to be a crucial organizer during brain development. Objective: Our aim was to determine whether increased levels of estradiol in the early postnatal period modulate the alterations in metabolism and brain metabolic circuits produced by overnutrition. Methods: Twenty-four male and 24 female Wistar rats were submitted to a HFD (34.9% fat) or a control diet (5% fat) from gestational day 6. From postnatal (P) 6 to P13, both control and HFD groups were administered a s.c. injection of vehicle or estradiol benzoate (0.4 mg/kg), resulting in eight experimental groups (n = 6 in each group). Body weight, food intake and subcutaneous, visceral, and brown fat pads were measured. Agouti-related peptide, neuropeptide Y, orexin, and proopiomelanocortin (POMC) were analyzed by quantitative real-time polymerase chain reaction assay and plasma estradiol levels were measured by ELISA. Results: Males fed a HFD showed an increase in body weight and the amount of visceral and subcutaneous fat, which was coincident with an increase in the number of kilocalories ingested. Neonatal estradiol treatment restored the body weight and subcutaneous fat of HFD males to control levels. Hypothalamic POMC mRNA levels in HFD females were increased with respect to control females. This increase was reverted with estradiol treatment during development. Discussion: HFD and estradiol treatment have different effects on males and females. Overnutrition affects physiological parameters, such as body weight, visceral, and subcutaneous fat content, in males, while females present alterations in hypothalamic POMC mRNA levels. Hence, the increase in estradiol levels during a period that is critical for the programing of the feeding system can modulate some of the alterations produced by the continuous intake of high-fat content food.Publicación Estrogen receptor beta and G protein-coupled estrogen receptor 1 are involved in the acute estrogenic regulation of arginine-vasopressin immunoreactive levels in the supraoptic and paraventricular hypothalamic nuclei of female rats(Elsevier, 2019-06-01) Lagunas, Natalia; Marraudino, Marilena; Amorim, Miguel de; Pinos Sánchez, María Elena; Collado Guirao, Paloma; Panzica, GianCarlo; Garcia Segura, Luis ; Grassi, DanielaThe ovarian hormone 17β-estradiol is known to regulate the release, expression and immunoreactivity of arginine-vasopressin (AVP) in the supraoptic and paraventricular hypothalamic nuclei of rodents. Previous studies have shown that estrogen receptor α is involved in the effects of chronic estradiol administration on arginine-vasopressin immunoreactivity in the female rat hypothalamus. In this study we have examined the effect of an acute administration of estradiol or specific agonists for estrogen receptors α, β and G protein-coupled estrogen receptor 1 on the immunoreactivity of arginine-vasopressin in the hypothalamus of adult ovariectomized female rats. Acute estradiol administration resulted in a significant decrease in the number of arginine-vasopressin immunoreactive neurons in the supraoptic and paraventricular nuclei after 24 h. The effects of the specific estrogen receptors agonists suggest that the action of estradiol on arginine-vasopressin immunoreactivity is mediated in the supraoptic nucleus by G protein-coupled estrogen receptor 1 and in the paraventricular nucleus by both estrogen receptor β and G protein-coupled estrogen receptor 1. Thus, in contrast to previous studies on the effect of chronic estrogenic treatments, the present findings suggest that estrogen receptor β and G protein-coupled estrogen receptor 1 mediate the acute effects of estradiol on arginine-vasopressin immunoreactivity in the hypothalamus of ovariectomized rats.