Persona: Morales Camarzana, Consolación Mónica
Cargando...
Dirección de correo electrónico
ORCID
0000-0001-9786-9076
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Morales Camarzana
Nombre de pila
Consolación Mónica
Nombre
7 resultados
Resultados de la búsqueda
Mostrando 1 - 7 de 7
Publicación Neurotoxicity and endocrine disruption caused by polystyrene nanoparticles in zebrafish embryo(Elsevier, 2023-05-20) Torres Ruiz, Mónica; Alba González, Mercedes de; González, M. Carmen; Cañas Portilla, Ana Isabel; Vieja, Antonio de la; Morales Camarzana, Consolación Mónica; Martín Folgar, RaquelNanoplastics (NP) are present in aquatic and terrestrial ecosystems. Humans can be exposed to them through contaminated water, food, air, or personal care products. Mechanisms of NP toxicity are largely unknown and the Zebrafish embryo poses an ideal model to investigate them due to its high homology with humans. Our objective in the present study was to combine a battery of behavioral assays with the study of endocrine related gene expression, to further explore potential NP neurotoxic effects on animal behavior. Polystyrene nanoplastics (PSNP) were used to evaluate NP toxicity. Our neurobehavioral profiles include a tail coiling assay, a light/dark activity assay, two thigmotaxis anxiety assays (auditory and visual stimuli), and a startle response - habituation assay in response to auditory stimuli. Results show PSNP accumulated in eyes, neuromasts, brain, and digestive system organs. PSNP inhibited acetylcholinesterase and altered endocrine-related gene expression profiles both in the thyroid and glucocorticoid axes. At the whole organismlevel, we observed altered behaviors such as increased activity and anxiety at lower doses and lethargy at a higher dose, which could be due to a variety of complex mechanisms ranging from sensory organ and central nervous system effects to others such as hormonal imbalances. In addition, we present a hypothetical adverse outcome pathway related to these effects. In conclusion, this study provides new understanding into NP toxic effects on zebrafish embryo, emphasizing a critical role of endocrine disruption in observed neurotoxic behavioral effects, and improving our understanding of their potential health risks to human populations.Publicación Molecular effects of polystyrene nanoplastics toxicity in zebrafish embryos (Danio rerio)(Elsevier, 2022-11-02) Torres Ruiz, Mónica; Alba, Mercedes de; Cañas Portilla, Ana Isabel; González, M. Carmen; Morales Camarzana, Consolación Mónica; Martín Folgar, RaquelPlastics pose a health hazard to living beings and the environment. Plastic degradation produces nano-sized plastic particles (NPs) that end up in terrestrial and aquatic ecosystems, including oceans, rivers, and lakes. Their presence in air, drinking water, sediments, food, and personal care products leads to a variety of exposure routes for living beings, including humans. The toxicity mechanisms of these nanomaterials (NMs) in living organisms and ecosystems are currently unknown, making it a priority to understand their effects at the molecular and cellular levels. The zebrafish (Zf) (Danio rerio) is a model organism which has a high homology with humans and has been widely used to assess the hazard of different xenobiotics. In this study, the expression changes of different genes in 120 hpf Zf embryos (Zfe) after exposure to polystyrene (PS) NPs (30 nm) at concentrations of 0.1, 0.5 and 3 ppm were investigated. The results showed that the gene encoding heat shock protein (hsp70) was down-regulated in a dose-dependent manner. The genes encoding superoxide dismutase (SOD 1 and SOD 2), apoptotic genes (cas 1 and cas 8) and interleukin 1-β (il1β) were activated at the concentration of 3 ppm PS NP, while the anti-apoptotic gene Bcl2α was inhibited at 0.5 and 3 ppm. In addition, the neurotransmitter-related gene Acetyl-Cholinesterase (ache) was significantly inhibited and the DNA repair genes (gadd45α and rad51) were also down-regulated. In contrast, the mitochondrial metabolism-related gene cox1 did not alter its expression in any of the treatments. Most of the changes in gene expression occurred at the highest concentration of NPs. Overall, the results indicated that NPs generated cellular stress that caused certain alterations in normal gene expression (oxidative stress, apoptotic and inflammatory processes, neurotoxicity and anti-apoptotic proteins), but did not cause any mortality after 120 hpf exposure at the three concentrations assayed. These results highlight the need for further studies investigating the effects, at the molecular level, of these materials in humans and other living organisms.Publicación Toxicological effects of three different types of highly pure graphene oxide in the midge Chironomus riparius(Elsevier, 2021-12-23) Esteban Arranz, Adrián; Negri, Viviana; Morales Camarzana, Consolación Mónica; Martín Folgar, RaquelGraphene oxide (GO) is a carbon nanomaterial used in electronics, biomedicine, environmental remediation and biotechnology. The production of graphene will increase in the upcoming years. The carbon nanoparticles (NPs) are released into the environment and accumulated in aquatic ecosystems. Information on the effects of GO in aquatic environments and its impact on organisms is still lacking. The aim of this study was to synthesise and characterise label-free GO with controlled lateral dimensions and thickness – small GO (sGO), large GO (lGO) and monolayer GO (mlGO) – and determine their impact on Chironomus riparius, a sentinel species in the freshwater ecosystem. Superoxide dismutase (SOD) and lipid peroxidation (LPO) was evaluated after exposures for 24 h and 96 h to 50, 500, and 3000 μg/L. GOs accumulated in the gut of C. riparius and disturbed its antioxidant metabolism. We suggest that all types of GO exposure can upregulate of SOD. Moreover, both lGO and mlGO treatments caused LPO damage in C. riparius in comparison to sGO, proving its favourable lateral size impact in this organism. Our results indicate that GOs could accumulate and induce significant oxidative stress on C. riparius. This work shows new information about the potential oxidative stress of these NMs in aquatic organisms.Publicación Effect of environmental stressors on the mRNA expression of ecdysone cascade genes in Chironomus riparius(Springer, 2021-09-13) Fuente Rubio, Mercedes de la; Martín Folgar, Raquel; Martínez Paz, Pedro; Cortés Rubio, María Estrella del Perpetuo; Martínez Guitarte, José Luis; Morales Camarzana, Consolación Mónica; https://orcid.org/0000-0002-5772-8153Chemical compounds produced by humans are continuously reaching the environment. In this work, we characterised the expression patterns of important endocrine-related genes involved in the ecdysone pathway in the fourth larval instar of the model species Chironomus riparius after exposure to three chemicals: ethinyl oestradiol (EE), nonylphenol (NP) and bis(tributyltin) oxide (TBTO). We used real-time PCR to analyse the gene expression levels of ecdysone receptor (EcR) and ultraspiracle (usp), two genes that encode the dimerising partners of the functional ecdysone receptor; the orphan receptor ERR (oestrogen-related receptor), with an unknown function in invertebrates; and E74, an early response gene induced by ecdysteroids. We estimated the bioaccumulation potential, bioavailability and physicochemical properties of these chemicals, together with a number of other exogenous agents known to interfere with the hormonal system. We also provide a review of previous transcriptional studies showing the effect of all these chemicals on ecdysone cascade genes. This analysis provides useful data for future ecotoxicological studies involving invertebrate species.Publicación DNA damage and molecular level effects induced by polystyrene (PS) nanoplastics (NPs) after Chironomus riparius (Diptera) larvae(ELSEVIER, 2024) Martín Folgar, Raquel; Sabroso, Celia; Cañas Portilla, Ana I.; Torres Ruíz, Mónica; González Caballero, Mª Carmen; Dorado, Helena; Velasco, Ignacio; Morales Camarzana, Consolación Mónica; https://orcid.org/0009-0003-3792-2877; https://orcid.org/0000-0002-4641-4108; https://orcid.org/0000-0002-1564-0671; https://orcid.org/0000-0001-7180-3749; https://orcid.org/0009-0001-3158-004XIn this work, we analyzed the early molecular effects of polystyrene (PS) nanoplastics (NPs) on an aquatic primary consumer (larvae of Chironomus riparius, Diptera) to evaluate their potential DNA damage and the transcriptional response of different genes related to cellular and oxidative stress, endocrine response, developmental, oxygen transport, and immune response. After 24-h exposures of larvae to doses of PS NPs close to those currently found in the environment, the results revealed a large genotoxic effect. This end was evidenced after significant increases in DNA strand breaks of C. riparius larvae quantified by the comet assay, together with results obtained when analyzing the expression of four genes involved in DNA repair (xrrc1, ATM, DECAY and NLK) and which were reduced in the presence of these nanomaterials. Consequently, this reduction trend is likely to prevent the repair of DNA damage caused by PS NPs. In addition, the same tendency to reduce the expression of genes involved in cellular stress, oxidative stress, ecdysone pathway, development, and oxygen transport was observed. Taken together, these results suggest that PS NPs reduce the expression of hormonal target genes and a developmental gene. We show, for the first time, effects of PS NPs on the endocrine system of C. riparius and suggest a possible mechanism of blocking ecdysteroid hormones in insects. Moreover, the NPs were able to inhibit the expression of hemoglobin (Hb C), a protein involved in oxygen transport, and activate a gene of the humoral immune system. These data reveal for the first time the genomic effects of PS NPs in the aquatic invertebrate C. riparius, at the base of the food chain.Publicación BPA and its analogues (BPS and BPF) modify the expression of genes involved in the endocrine pathway and apoptosis and a multi drug resistance gene of the aquatic midge Chironomus riparius (Diptera)(Elsevier, 2020-05-24) Morales Camarzana, Consolación Mónica; Fuente Rubio, Mercedes de la; Martín Folgar, RaquelMany countries are limiting the use of bisphenol A (BPA) because evidence shows it is dangerous to human health and wildlife. For the manufacturing of polycarbonate plastics, bisphenol S (BPS) and bisphenol F (BPF) are proposed as safer alternatives. They have already been released into the aquatic environment without previously available information about their potential adverse effects. In this study, we compared the effects of BPA, BPS and BPF exposure to the expression profile of genes involved in the endocrine pathway (EcR and E74), ecdysone metabolism (Cyp18a1 and Shadow), apoptosis (DRONC) and the multidrug resistance-associated protein 1 gene (MRP1) in the midge, Chironomus riparius (Diptera). The three toxicants increased Shadow expression, which is involved in ecdysone synthesis, but only BPF significantly altered Cyp18a1, which is implicated in ecdysone degradation. BPS and BPF modified EcR and E74 expression; BPF upregulated the effector caspase DRONC. Furthermore, BPA significantly increased MRP1 expression. This study provides insights into the action of bisphenols at the molecular level and highlights the potential risks of BPS and BPF as BPA alternatives.Publicación Effects at molecular level of multi-walled carbon nanotubes (MWCNT) in Chironomus riparius (DIPTERA) aquatic larvae(Elsevier, 2019-04) Martínez Paz, Pedro; Negri, Viviana; Esteban Arranz, Adrián; Ballesteros García, Paloma; Martínez Guitarte, José Luis; Morales Camarzana, Consolación MónicaNowadays, due to the physical, chemical, electrical, thermal and mechanical properties of carbon nanotubes (CNT), its have been currently incorporated into biomedical products and they are employed in drug delivery drug administration, biosensor design, microbial treatments, consumer products, and new products containing CNT are expected in the future. CNT are hydrophobic and have a tendency to accumulate in sediments if they are released into aquatic ecosystems. Vertebrate studies have revealed concerns about the toxicity of carbon nanotubes, but there is very limited data on the toxic effects in aquatic invertebrate species. The aim of the present study is to determine the effects of MWCNT in Chironomus riparius at the molecular level, understanding its mode of action and analyzing the suitability of this species to monitor and assess risk of nanomaterials in aquatic ecosystems. To evaluate possible toxic effects caused by carbon nanotube environmental dispersion with regard to aquatic compartment, we study the mRNA levels of several related genes with DNA repairing mechanisms, cell stress response, cell apoptosis and cytoskeleton by Real-Time PCR and proposed a freshwater invertebrate C. riparius, which is a reference organism in aquatic toxicology. The obtained results show a transcriptional alteration of some genes included in this study, indicating that different cell processes are affected and providing one the first evidences in the mechanisms of action of MWCNT in invertebrates. Moreover, this data reinforces the need for further studies to assess the environmental risk of nanomaterial to prevent future damage to aquatic ecosystems.