Persona: Huerga Pastor, Lidia
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-6634-3482
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Huerga Pastor
Nombre de pila
Lidia
Nombre
4 resultados
Resultados de la búsqueda
Mostrando 1 - 4 de 4
Publicación Limit Behavior of Approximate Proper Solutions in Vector Optimization(Society for Industrial and Applied Mathematics, 2019) Gutiérrez, C.; Novo, V.; Huerga Pastor, Lidia; Sama Meige, Miguel ÁngelIn the framework of a vector optimization problem, we provide conditions for approximate proper solutions to tend to exact weak/efficient/proper solutions when the error tends to zero. This limit behavior depends on an approximation set that is used to define the approximate proper efficient solutions. We also study the special case when the final space of the vector optimization problem is normed, and more particularly, when it is finite dimensional. In these specific frameworks, we provide several explicit constructions of dilating ordering cones and approximation sets that lead to the desired limit behavior. In proving our results, new relationships between different concepts of approximate proper efficiency are stated.Publicación Soluciones propias aproximadas de problemas de optimización vectorial(Universidad Nacional de Educación a Distancia (España). Facultad de Ciencias. Departamento de Matemática Aplicada, 2014-10-23) Huerga Pastor, Lidia; Novo Sanjurjo, Vicente; Gutiérrez Vaquero, CésarSe introduce un concepto de solución propia aproximada de problemas de optimización vectorial. Esta noción se define con la finalidad de obtener un conjunto de soluciones aproximadas que represente bien al conjunto eficiente salvo un pequeño error, lo que se traduce en que el límite superior de Painlevé-Kuratowski del conjunto formado por estas soluciones, .cuando el error de precisión tiende a cero, está incluido en el conjunto de soluciones eficientes exacta.s. Esta propiedad esencial no es común en las nociones de eficiencia propia aproximada, de forma que, con frecuencia, estos conceptos pueden generar sucesiones de soluciones aproximadas que se alejan del conjunto eficiente tanto como se quiera, La memoria se vertebra. en tomo al estudio de estas soluciones. Concretamente, se .analizan sus propiedades y se caracterizan mediante esca]arización lineal bajo condiciones de convexidad generalizada. Además, se utilizan para definir un concepto de punto de silla. propio aproximado e introducir. y estudiar problemas duales aproximados y una e-subdiferencial propia de funciones vectoriales. Los problemas duales introducidos son ambos de tipo Lagrangiano. El primero se define mediante una Lagrangiana escalar y el segundo mediante una multifunción Lagrangiana, que generaliza las Lagrangianas vectoriales más importantes de la literatura. Se obtienen teoremas de dualidad débil y fuerte bajo condiciones de estabilidad y convexidad generalizada, que relacionan los maximales aproximados de cada problema dual con estas nuevas soluciones propias aproximadas del primal. La E-subdiferencial propia definida se caracteriza a través de E-subgradientes de funciones escalares, asumiendo condiciones de convexidad generalizada y es apropiada para tratar con sucesiones minimizantes. Finalmente, se prueban para estasubdiferencial propia aproximada reglas de cálculo de tipo Moreau-Rockafellar y reglas de la cadena.Publicación Variants of the Ekeland variational principle for approximate proper solutions of vector equilibrium problems(Springer Nature, 2019-04-19) Hai, L. P.; Khanh, P. Q.; Novo, V.; Huerga Pastor, LidiaIn this paper, we provide variants of the Ekeland variational principle for a type of approximate proper solutions of a vector equilibrium problem, whose final space is finite dimensional and partially ordered by a polyhedral cone. Depending on the choice of an approximation set that defines these solutions, we prove that they approximate suitably exact weak efficient/proper efficient/efficient solutions of the problem. The variants of the Ekeland variational principle are obtained for an unconstrained and also for a cone-constrained vector equilibrium problem, through a nonlinear scalarization, and expressed by means of the matrix that defines the ordering cone, which makes them easier to handle. At the end, the results are applied to multiobjective optimization problems, for which a related vector variational inequality problem is defined.Publicación Approximate solutions of vector optimization problems via improvement sets in real linear spaces(Springer Nature, 2018-04) Gutiérrez, C.; Jiménez, B.; Novo, V.; Huerga Pastor, LidiaWe deal with a constrained vector optimization problem between real linear spaces without assuming any topology and by considering an ordering defined through an improvement set E. We study E-optimal and weak E-optimal solutions and also proper E-optimal solutions in the senses of Benson and Henig. We relate these types of solutions and we characterize them through approximate solutions of scalar optimization problems via linear scalarizations and nearly E-subconvexlikeness assumptions. Moreover, in the particular case when the feasible set is defined by a cone-constraint, we obtain characterizations by means of Lagrange multiplier rules. The use of improvement sets allows us to unify and to extend several notions and results of the literature. Illustrative examples are also given.