Persona:
Catalán Pérez, Juan Pablo

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0001-6599-1720
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Catalán Pérez
Nombre de pila
Juan Pablo
Nombre

Resultados de la búsqueda

Mostrando 1 - 6 de 6
  • Publicación
    Dust contamination of Divertor Remote Handling System in ITER Hot Cell: A novel approach to model complex superficial radiation sources
    (ELSEVIER, 2024) Martínez Albertos, Pablo; Sauvan, Patrick; Catalán Pérez, Juan Pablo; F., Javier; Le Tonquèze, Yannick; Hamilton, David Thomas; Juárez Mañas, Rafael
    Activated dust produced by the erosion of plasma-facing components entails a significant radiation source for ITER and, generally, for all tokamaks aiming for operation under high neutron exposure. In-Vessel remote-handling operations will mobilise the dust, which will be deposited on the remote-handling tools used, for which hands-on maintenance is expected. To ensure safe maintenance of the remote-handling equipment, a dedicated decontamination process in the Hot Cell is required. Evaluating the radiation fields produced by the contaminated equipment is central to minimising radiation exposure to personnel. In this study, we present a nuclear analysis of the Divertor Remote Handling System during its transfer and decontamination process. Past computational limitations regarding superficial sources definition and high uncertainties on the dust model have been overcome by implementing a novel methodology and following an alternative approach. Two surface-dependent dust distributions over the complex geometry surfaces were considered to evaluate the dose rates according to the different contamination levels during the process phases. A scoping analysis was performed to determine the amount of dust that would comply with project requirements in each phase of the process. Improvement margins were identified in the quantification of the amount of dust and Hot Cell layout.
  • Publicación
    Fast generation of parametric neutronic models for stellarators. Coupling HeliasGeom and GEOUNED
    (ELSEVIER, 2024) Alguacil Orejudo, Javier; Catalán Pérez, Juan Pablo; Palermo, Iole; Sosa, David; Lion, Jorrit; Warmer, F.; Sanz Gozalo, Javier; https://orcid.org/0000-0001-8725-8167; https://orcid.org/0009-0000-5319-5575; https://orcid.org/0000-0002-6249-2368
    The operation of the Wendelstein 7-X has highlighted stellarators as potential fusion power reactors. As a consequence, the pre-conceptual design of the next HELIAS stellarator has started in the framework of EUROfusion. During these first stages, it is essential to assess the feasibility of various stellarator concepts. It is important to emphasize that these concepts can vary significantly in terms of their overall shape and allocation of space for each component, including the vacuum vessel, breeding blankets, among others. Although pre-conceptual neutronic analysis can be conducted using straightforward yet representative neutronic models, such as simplified multilayer models with minimal geometric details, the intricate shape of stellarators presents challenges to produce them quickly. This issue prevents the effective parametric optimization of the concepts, creating a bottleneck in the design of HELIAS. In order to overcome this problem, we are developing a computational workflow for the fast production of parametric stellarator neutronic MCNP models. This work presents the current status of the scheme composed of two steps: HeliasGeom for the production of parametric multilayer CAD models, and GEOUNED for the translation of these models to MCNP CSG neutronic models.
  • Publicación
    Análisis nuclear en reactores de fusión por confinamiento magnético: desarrollos computacionales y aplicación a DEMO e ITER
    (Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingenieros Industriales. Departamento de Ingeniería Energética, 2015-05-14) Catalán Pérez, Juan Pablo; Sanz Gozalo, Javier; Sauvan, Patrick
    El objetivo principal de esta tesis es primero, proponer e implementar una metodología que permita realizar el análisis nuclear de reactores de confinamiento magnético, y segundo, aplicarla a diferentes instalaciones actualmente de gran interés en el mundo de la fusión. Teniendo esto en cuenta la tesis se estructura en dos partes principales: metodología y aplicaciones. En la primera parte se presenta la metodología implementada para abordar el análisis nuclear que requiere de cálculos de transporte de radiación y de activación de los materiales así como del acoplamiento entre ambos. Para realizar los cálculos de transporte y activación se han utilizado los códigos MCNP y ACAB que se pueden considerar estándar dentro del mundo de la fusión. Mientras que para el acoplamiento transporte-activación, utilizado mayoritariamente para el cálculo de dosis residual, se necesitan herramientas que sean capaces de obtener la fuente de decaimiento con una gran resolución espacial. En esta tesis se presenta el desarrollo de la herramienta R2SUNED para el acoplamiento transporte-activación. Tanto la descripción de esta herramienta como su verificación ocupan un papel central en esta tesis. En la segunda parte de la tesis la metodología propuesta se ha aplicado a tres instalaciones diferentes: dos reactores DEMO (DCLL y HCLL) y al reactor experimental ITER. Estas aplicaciones tienen diferentes niveles de complejidad mostrando, en buena medida, la evolución del autor a lo largo del desarrollo de esta tesis.
  • Publicación
    Development of a methodology to estimate the statistical SDR uncertainty with R2S-UNED
    (ELSEVIER, 2021) Alguacil Orejudo, Javier; Catalán Pérez, Juan Pablo; Sanz Gozalo, Javier; Sauvan, Patrick; https://orcid.org/0000-0002-9128-8817
    The Rigorous-Two-Steps (R2S) is one of the most useful methods to estimate the Shutdown Dose Rate (SDR). The most advanced R2S tools couple neutron and photon transport, which are often simulated using Monte Carlo (MC) codes, through an activation simulation using mesh-based techniques to improve the spatial resolution of the neutron flux and the decay gamma source. One of the problems of the methodology is that the statistical uncertainty of the neutron flux due to the MC method used by the transport codes is not considered by most R2S implementations. Consequently, larger tolerance must be assumed affecting to the design of the nuclear facilities. This article describes a scheme allowing the calculation of the SDR statistical uncertainty without any additional assumptions than those used in the R2S methodology. The approach proposed in this article is suitable for cell- and mesh-based R2S implementations. In this work, the methodology was implemented in the R2S-UNED code. The accurate application of the methodology requires the full the neutron flux uncertainty (covariance matrix) as input data. MCNP was modified to calculate this matrix, although, it cannot be calculated for most of the realistic R2S simulations due to its size. If that is the situation, we propose a guideline to reduce the size of the covariance matrix to be calculated according to its element contribution to the SDR. When this guideline cannot be applied, the methodology still allows calculating the upper and lower SDR uncertainty bounds. In this article, the guideline is applied to the calculation of the SDR uncertainty in the computational benchmark of ITER. In addition, we also study the possible impact of the neutron flux correlation degree on the SDR uncertainty in this benchmark.
  • Publicación
    Propagation of statistical uncertainty in mesh-based R2S calculations
    (Universidad Nacional de Educación a Distancia (España). Escuela Internacional de Doctorado. Programa de Doctorado en Tecnologías Industriales, 2021) Alguacil Orejudo, Javier; Catalán Pérez, Juan Pablo; Sauvan, Patrick
  • Publicación
    ACABLoop simulation tool: Improving the activation prediction of flowing PbLi alloy in support of DEMO fusion reactor design
    (ELSEVIER, 2024) García Camacho, Mauricio; Catalán Pérez, Juan Pablo; Sanz Gozalo, Javier
    PbLi alloy as breeder material is considered within the EUROfusion Programme in the Water-Cooled Lithium-Lead blanket concept of DEMO fusion reactor. The PbLi travels along loops entering and leaving the Breeding Blanket for recovering the produced tritium, removing generated impurities and activated corrosion products, etc. Prediction of activation-related responses in the flowing PbLi is a key safety issue in support of DEMO design. Traditionally, the activation inventory generated in the flowing PbLi has been calculated considering a simplistic approach, valid only for a pre-conceptual analysis. Additionally, the simulation of some phenomena is not possible when using that simple methodology. ACABLoop has been conceived as a tool to overcome such limitations predicting more realistically the activation of the PbLi alloy, providing all the information related to the generated isotopic inventory in the fluid. Status of ACABLoop development is presented as well as some applications for PbLi activation in DEMO loops, proving its suitability for fusion activation calculations. Additionally, a promising first validation of ACABLoop using a water loop and a D-T fusion neutron spectrum is shown. Last improvements of ACABLoop are devoted to allowing incorporation of CFD information as a tool for increasing the reliability in some specific situations.