Persona: Torre Rodríguez, Jaime Arturo de la
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-1657-0820
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Torre Rodríguez
Nombre de pila
Jaime Arturo de la
Nombre
3 resultados
Resultados de la búsqueda
Mostrando 1 - 3 de 3
Publicación Top-down and Bottom-up Approaches to Discrete Diffusion Models(Universidad Nacional de Educación a Distancia (España). Facultad de Ciencias. Departamento de Física Fundamental, 2015) Torre Rodríguez, Jaime Arturo de la; Español Garrigos, JoséPublicación Coarse-graining Brownian motion : from particles to a discrete diffusion equation(Universidad Nacional de Educación a Distancia (España). Facultad de Ciencias, 2010-10-13) Torre Rodríguez, Jaime Arturo de la; Español Garrigos, JoséWe consider a recently obtained coarse-grained discrete equation for the diffusion of Brownian particles. The detailed level of description is governed by a Brownian dynamics of non-interacting particles. The coarse-level is described by discrete concentration variables defined in terms of the Delaunay cell. These coarse variables obey a stochastic differential equation that can be understood as a discrete version of a diffusion equation. The diffusion equation contains two basic building blocks which are the entropy function and the friction matrix. The entropy function is shown to be non-additive due to the overlapping of cells in the Delaunay construction. The friction matrix is state dependent in principle, but for near-equilibrium situations it is shown that it may safely evaluated at the equilibrium value of the density fieldPublicación Internal dissipation in the Dzhanibekov effect(Elsevier, 0001-08-20) Torre Rodríguez, Jaime Arturo de la; Español Garrigos, JoséThe Dzhanibekov effect is the phenomenon by which triaxial objects like a spinning wing bolt may continuously flip their rotational axis when initially spinning around the intermediate axis of inertia. This effect is closely related to the Tennis Racket theorem that establishes that the intermediate axis of inertia is unstable. Over time, however, dissipation ensures that a torque free spinning body will eventually rotate around its major axis, in a process called precession relaxation, which counteracts the Dzhanibekov effect. Euler’s equations for a rigid body effectively describe the Dzhanibekov effect, but cannot account for the precession relaxation effect. A dissipative generalization of Euler’s equations displays two dissipative mechanisms: orientational diffusion and viscoelasticity. Here we show through numerical simulations of the dissipative Euler’s equations that orientational diffusion, rather than viscoelasticity, primarily drives precession relaxation and effectively suppresses the Dzhanibekov effect.