Persona:
Pancorbo Castro, Manuel

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Pancorbo Castro
Nombre de pila
Manuel
Nombre

Resultados de la búsqueda

Mostrando 1 - 3 de 3
  • Publicación
    Renewable Energy Remote Online Laboratories in Jordan Universities: Tools for Training Students in Jordan
    (Elsevier, 2020-04) Cano, Jesús; Hammad, Bashar; Al Zoubi, Abdullah; Pastor Vargas, Rafael; Tobarra Abad, María de los Llanos; Robles Gómez, Antonio; Hernández Berlinches, Roberto; Pancorbo Castro, Manuel
    The use of the concept of technology-enhanced learning is a design already applied in developed countries and incorporated as an active part of their educational models and curricular development. This is even more relevant in the case of eLearning, where these technologies correspond to remote / virtual laboratories. They are very useful in the fields of Science and Engineering. According to this, the current work shows the incorporation of this type of technology to traditional curricular schemes, with the aim of improving the effectiveness of learning. Another objective is to build reusable infrastructures among Universities, supported with public and private government resources. Specifically, this paper shows the development, implementation, and integration of remote renewable energy laboratories in Jordan, and how they have been used within the director plan of the Jordanian government for the promotion of renewable energies in that country. This plan includes not only the design of remote laboratories but also their integration into a curricular model. This integration is done at the level of online learning courses and pilot experiences in the development of these types of learning technologies. In a distance methodology environment, the instructors must design the course structure keeping in mind that students are online, but not face-to-face in the classroom. Additionally, they have to propose adapted resources (remote laboratories, guidelines, etc.) and content. The paper focuses on the incorporation of remote/virtual laboratories, showing how these labs were developed/integrated into online courses. To validate the incorporation of this type of resources in an environment usually not online, a set of surveys was designed to support a technology evaluation methodology (TAM, Technology Acceptance Model). This evaluation allows knowing the degree of satisfaction of the technology (remote and virtual laboratories as resources) using a structured experimental method (SEM, Structural Equation Models). As a result of the application of this experimental method, the calculated statistical data indicate that the use of remote and virtual laboratories improves the perception and use of virtual environments at a distance. Also, it can be indicated that these laboratories are presented as an essential resource to improve the quality of online teaching in engineering courses.
  • Publicación
    Melting in two-dimensional systems: Characterizing continuous and first-order transitions
    (American Physical Society, 2022-03-16) Toledano Sanz, Óscar; Pancorbo Castro, Manuel; Alvarellos Bermejo, José Enrique; Gálvez González, Óscar
    The mechanisms underlying the melting process in bidimensional systems have been widely studied by means of experiments, theory, and simulations since Kosterlitz, Thouless, Halperin, Nelson, and Young elaborated the KTHNY theory. In the framework of this theory, melting is produced by two continuous transitions mediated by the unbinding of local defects and the appearance of an intermediate phase between solid and liquid, called “hexatic.” There are also other competing theories that could explain this process, as, e.g., the formation of grain boundaries (lines of defects), which lead to a first-order transition. In this paper, simulations of systems interacting via the Lennard Jones 6–12 and Morse potentials using the Metropolis Monte Carlo method in the NVT ensemble have been performed to study the effect of the potential shape in the melting process. Additionally, truncated Morse potentials (with only a repulsive part) have been used to investigate the effect of the long-range interactions. Transitions from solid to hexatic phases were found to be continuous for all potentials studied, but transitions from hexatic to liquid phases were found to be either continuous or first order, depending on the thermodynamic conditions and the potential interaction selected, suggesting that melting can be triggered by different mechanisms, like grain boundary formation or defect unbinding. We find that the ratio of defects at the liquid-hexatic or liquid-coexistence phase transitions could determine the nature of these transitions and the mechanism underlying the melting process. The effect of the interaction of particles with their first- and second-nearest neighbors is also discussed.
  • Publicación
    Security vulnerabilities in Raspberry Pi. Analysis of hardware and software weaknesses
    (IEEE Xplore, 2019-11-01) Jorge Sainz-Raso; Martín Gutiérrez, Sergio; Díaz Orueta, Gabriel; Pancorbo Castro, Manuel
    The Internet of Things (IoT) is made up of many devices, platforms, and communication protocols. Among them, Raspberry Pi has arisen as one of the most popular equipment for hobby and education purposes because of its low cost, small size, flexibility, and potential. Nevertheless, Raspberry Pi needs an operating system to work, which exposes it to software vulnerabilities despite the many advantages it provides in comparison with nonoperating system devices. This device also has hardware limitations, which impact on its security. These limitations exist because some concessions had to be done during the design in order to decrease the cost of the device. This article analyzes different hardware and software vulnerabilities that can be found in a Raspberry Pi when using a default installation of different available operating systems. Finally, we propose a list of good practices to minimize the presented issues.