Persona:
Plaza Morales, Laura

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0001-5144-8014
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Plaza Morales
Nombre de pila
Laura
Nombre

Resultados de la búsqueda

Mostrando 1 - 5 de 5
  • Publicación
    Authority and Priority Signals in Automatic Summary Generation for Online Reputation Management
    (Wiley, 2021-05-01) Rodríguez Vidal, Javier; Carrillo de Albornoz Cuadrado, Jorge Amando; Gonzalo Arroyo, Julio Antonio; Plaza Morales, Laura
    Online reputation management (ORM) comprises the collection of techniques that help monitoring and improving the public image of an entity (companies, products, institutions) on the Internet. The ORM experts try to minimize the negative impact of the information about an entity while maximizing the positive material for being more trustworthy to the customers. Due to the huge amount of information that is published on the Internet every day, there is a need to summarize the entire flow of information to obtain only those data that are relevant to the entities. Traditionally the automatic summarization task in the ORM scenario takes some in-domain signals into account such as popularity, polarity for reputation and novelty but exists other feature to be considered, the authority of the people. This authority depends on the ability to convince others and therefore to influence opinions. In this work, we propose the use of authority signals that measures the influence of a user jointly with (a) priority signals related to the ORM domain and (b) information regarding the different topics that influential people is talking about. Our results indicate that the use of authority signals may significantly improve the quality of the summaries that are automatically generated.
  • Publicación
    Automatic Detection of Influencers in Social Networks: Authority versus Domain signals
    (Wiley, 2019-01-07) Rodríguez Vidal, Javier; Anaya Sánchez, Henry; Gonzalo Arroyo, Julio Antonio; Plaza Morales, Laura
    Given the task of finding influencers (opinion makers) for a given domain in a social network, we investigate (a) what is the relative importance of domain and authority signals, (b) what is the most effective way of combining signals (voting, classification, learning to rank, etc.) and how best to model the vocabulary signal, and (c) how large is the gap between supervised and unsupervised methods and what are the practical consequences. Our best results on the RepLab dataset (which improves the state of the art) uses language models to learn the domain-specific vocabulary used by influencers and combines domain and authority models using a Learning to Rank algorithm. Our experiments show that (a) both authority and domain evidence can be trained from the vocabulary of influencers; (b) once the language of influencers is modeled as a likelihood signal, further supervised learning and additional network-based signals only provide marginal improvements; and (c) the availability of training data sets is crucial to obtain competitive results in the task. Our most remarkable finding is that influencers do use a distinctive vocabulary, which is a more reliable signal than nontextual network indicators such as the number of followers, retweets, and so on.
  • Publicación
    Automatic Generation of Entity-Oriented Summaries for Reputation Management
    (Springer, 2020-04-01) Rodríguez Vidal, Javier; Verdejo, Julia; Carrillo de Albornoz Cuadrado, Jorge Amando; Amigo Cabrera, Enrique; Plaza Morales, Laura; Gonzalo Arroyo, Julio Antonio
    Producing online reputation summaries for an entity (company, brand, etc.) is a focused summarization task with a distinctive feature: issues that may affect the reputation of the entity take priority in the summary. In this paper we (i) present a new test collection of manually created (abstractive and extractive) reputation reports which summarize tweet streams for 31 companies in the banking and automobile domains; (ii) propose a novel methodology to evaluate summaries in the context of online reputation monitoring, which profits from an analogy between reputation reports and the problem of diversity in search; and (iii) provide empirical evidence that producing reputation reports is different from a standard summarization problem, and incorporating priority signals is essential to address the task effectively.
  • Publicación
    Detectando Influencers en Medios Sociales utilizando la información de sus seguidores
    (Sociedad Española para el Procesamiento del Lenguaje Natural, 2020-03) Rodríguez Vidal, Javier; Gonzalo Arroyo, Julio Antonio; Plaza Morales, Laura
    Dada la tarea de encontrar influencers en un dominio dado (i.e. banking) en una red social, en este artículo investigamos (i) la importancia de caracterizar a los seguidores para la detección automática de influencers; (ii) la manera más efectiva de combinar señales obtenidas de los seguidores y de los perfiles principales para la detección automática de influencers. En este trabajo, hemos modelado el discurso usado por los usuarios en dos dominios, automotive y banking, así como el lenguaje utilizado por los influencers en dichos dominios y por sus seguidores, y utilizamos estos Modelos de Lenguaje para estimar la probabilidad de ser un influencer. Nuestro mayor descubrimiento es que los influencers no sólo dependen de su conocimiento sobre el dominio sino del de sus seguidores; por lo tanto, cuanto mayor conocimiento y número de expertos haya entre sus seguidores, mayor será la probabilidad que el perfil sea de un influencer.
  • Publicación
    Feature engineering for sentiment analysis in e-health forums
    (Public Library of Science, 2018-11-29) Rodríguez Vidal, Javier; Carrillo de Albornoz Cuadrado, Jorge Amando; Plaza Morales, Laura; Teomiro García, Ismael Iván
    Introduction Exploiting information in health-related social media services is of great interest for patients, researchers and medical companies. The challenge is, however, to provide easy, quick and relevant access to the vast amount of information that is available. One step towards facilitating information access to online health data is opinion mining. Even though the classification of patient opinions into positive and negative has been previously tackled, most works make use of machine learning methods and bags of words. Our first contribution is an extensive evaluation of different features, including lexical, syntactic, semantic, network-based, sentiment-based and word embeddings features to represent patient-authored texts for polarity classification. The second contribution of this work is the study of polar facts (i.e. objective information with polar connotations). Traditionally, the presence of polar facts has been neglected and research in polarity classification has been bounded to opinionated texts. We demonstrate the existence and importance of polar facts for the polarity classification of health information. Material and methods We annotate a set of more than 3500 posts to online health forums of breast cancer, crohn and different allergies, respectively. Each sentence in a post is manually labeled as “experience”, “fact” or “opinion”, and as “positive”, “negative” and “neutral”. Using this data, we train different machine learning algorithms and compare traditional bags of words representations with word embeddings in combination with lexical, syntactic, semantic, network-based and emotional properties of texts to automatically classify patient-authored contents into positive, negative and neutral. Beside, we experiment with a combination of textual and semantic representations by generating concept embeddings using the UMLS Metathesaurus. Results We reach two main results: first, we find that it is possible to predict polarity of patient-authored contents with a very high accuracy (≈ 70 percent) using word embeddings, and that this considerably outperforms more traditional representations like bags of words; and second, when dealing with medical information, negative and positive facts (i.e. objective information) are nearly as frequent as negative and positive opinions and experiences (i.e. subjective information), and their importance for polarity classification is crucial.