Persona: Rovira de Antonio, Antonio José
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-6810-3757
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Rovira de Antonio
Nombre de pila
Antonio José
Nombre
17 resultados
Resultados de la búsqueda
Mostrando 1 - 10 de 17
Publicación Analysis and comparison of Integrated Solar Combined Cycles using parabolic troughs and linear Fresnel reflectors as concentrating systems(Elsevier, 2015-11-12) Abbas, Rubén; Rovira de Antonio, Antonio José; Barbero Fresno, Rubén; Montes Pita, María José; Varela Díez, FernandoThis paper compares the annual performance and economic feasibility of Integrated Solar Combined Cycles (ISCC) using two solar concentration technologies: parabolic trough collectors (PTC) and linear Fresnel reflectors (LFR). Integration of solar energy to the steam turbine of a combined cycle gives some advantages: the first one is the fuel saving due to the solar contribution and, additionally, the second one is that this contribution takes place especially in highly insolated periods with high ambient temperatures, when conventional combined cycles decrease their power rate and work with decreased efficiency. Previous works showed the convenience of ISCC using PTC and direct steam generation in locations with severe climatology. Besides, LFR technology is currently considered as a good option for reducing the cost of concentrating solar power. Thus, in the present work both concentrating technologies are studied and compared. Solar contribution is only used for evaporating water, increasing the production of the high pressure level of the steam generator. Two locations, Almeria and Las Vegas, are selected for the annual analyses. Results show that the proposed evaporative configurations increase the annual performance. Also, the thermal contribution is higher with PTC, but LFR may improve the economic feasibility of the plant.Publicación Proposal of optimized power cycles for the DEMO power plant (EUROfusion)(Elsevier, 2019-11) Sánchez, Consuelo; Rovira de Antonio, Antonio José; Montes Pita, María José; Muñoz Domínguez, MartaThe objective of this paper is the proposal of two configurations of Rankine cycles different from the standard solution considered for the DEMO 2017 design. The configurations are aimed to maintain as constant as possible the operation at the pulse and dwell modes with minimal fluctuations in the turbine and heat exchangers parameters, in order to maximize the reliability of these components. Each configuration, as well as the reference one, have been simulated both at pulse and dwell operation modes. Compared to the reference design, the proposed configurations are much steadier and mass flow rates in the steam generator and preheaters are constant. In summary, it is possible to ensure a completely steady operation of the whole steam cycle, including all the heat exchangers, without differences between the pulse and dwell modes using two secondary storage tanks additional to the two original molten salt ones.Publicación Analysis of an Integrated Solar Combined Cycle with Recuperative Gas Turbine and Double Recuperative and Double Expansion Propane Cycle.(MDPI, 2020) Abbas, Rubén; Sebastián, Andrés; Rovira de Antonio, Antonio José; Muñoz Domínguez, MartaThe main objective of this paper is to present and analyze an innovative configuration of integrated solar combined cycle (ISCC). As novelties, the plant includes a recuperative gas turbine and the conventional bottoming Rankine cycle is replaced by a recently developed double recuperative double expansion (DRDE) cycle. The configuration results in a fuel saving in the combustion chamber at the expense of a decreased exhaust gas temperature, which is just adequate to feed the DRDE cycle that uses propane as the working fluid. The solar contribution comes from a solar field of parabolic trough collectors, with oil as the heat transfer fluid. The optimum integration point for the solar contribution is addressed. The performance of the proposed ISCC-R-DRDE design conditions and off-design operation was assessed (daily and yearly) at two different locations. All results were compared to those obtained under the same conditions by a conventional ISCC, as well as similar configurations without solar integration. The proposed configuration obtains a lower heat rate on a yearly basis in the studied locations and lower levelized cost of energy (LCOE) than that of the ISCC, which indicates that such a configuration could become a promising technology.Publicación Red de Innovación Docente en Máquinas y Motores Térmicos(2009-09) Muñoz Domínguez, Marta; Rovira de Antonio, Antonio José; Margenat Calvo, SergioPublicación Proposal and analysis of an integrated solar combined cycle with partial recuperation.(Elsevier, 2020) Abbas, Rubén; Sánchez, Consuelo; Rovira de Antonio, Antonio José; Muñoz Domínguez, MartaThe paper analyses an integrated solar combined cycle that, as a novelty, includes a gas turbine with partial recuperation. A conventional solar arrangement including parabolic troughs with a thermal oil is assumed. This field feeds a solar steam generator working in parallel with the high-pressure evaporator of the heat recovery steam generator. The plant is designed to balance out the solar supply to the steam cycle with the thermal power transferred to the air in the recuperator before it is introduced in the combustion chamber. Thus, only a fraction of the turbine exhaust gas flows through the recuperator. The additional steam production due to the solar contribution is mitigated by lower power available at the evaporator of the heat recovery steam generator, making possible to achieve constant steam turbine operation regardless the solar contribution. Results show that the proposal reaches better performance and lower generating cost than conventional integrated solar combined cycles. Besides, a new proposal to evaluate plant performances and economical assessments is introduced, which has been shown useful to understand correctly the results obtained.Publicación Performance of an Organic Rankine Cycle with two expanders at off-design operation(Elsevier, 2019-02-19) Ibarra Mollá, Mercedes; Rovira de Antonio, Antonio José; Alarcón-Padilla, Diego-CésarThe objective of this work was to simulate the behavior of an Organic Rankine Cycle (ORC) system with two expanders in series at off-design working conditions. The influence of both the intermediate pressure and the volumetric expansion ratio of the expanders on the off-design performance of the ORC was studied and the irreversibilities of the components were analyzed. The performance of the ORC with two expanders for two different designs was also discussed. The thermal efficiency reached using two expanders was higher than the obtained using only one. However, this increase conveyed an increase in the complexity of the design and control of the expanders. As an additional conclusion, it was found that the influence of the intermediate pressure is higher than that of the volume expansion ratio of each expander. The irreversibility of the first expander was mainly due to leaks. However, the performance of the second expander was particularly affected by the difference between the discharged pressure and the condensation pressure. The off-design analysis allowed the definition of a methodology to achieve the desired power with the maximum thermal efficiency, and the identification of the best actuation for the part load operation.Publicación Advanced thermodynamic cycles for finite heat sources: proposals for closed and open heat sources applications(Elsevier, 2020) Sánchez, Consuelo; Rovira de Antonio, Antonio José; Muñoz Domínguez, Marta; Barbero Fresno, RubénThis paper analyses two non-conventional thermodynamic cycles designed to work with finite heat sources, which are suitable for maximum temperatures of about 400 °C. The Hybrid Rankine-Brayton (HRB) cycle fits well to closed heat sources and, in the paper, it is analysed considering its exergy efficiency and some requirements for the maximum and minimum temperature of the heat transfer fluid that feeds the cycle, obtaining promising results. The other one is a new proposal called Recuperated and Double Expanded (RDE) cycle, aimed to translate the good features of HRB from closed heat sources to open ones, where the performance of HRB is limited. Both cycles are compared to some reference ones. Results show that the HRB cycle is a good candidate for finite closed heat sources, particularly with maximum temperature around 400 °C and with temperature changes of the heat transfer fluid from 100 °C to 150 °C. The RDE cycle exhibits good performance for finite open heat sources with maximum temperatures between 200 °C and 400 °C, and it behaves similarly to tri-lateral cycles.Publicación Thermodynamic Cycles for Solar Thermal Power Plants: A Review(WIREs (Wiley Interdisciplinary Reviews), 2021-10-17) Muñoz Domínguez, Marta; Rovira de Antonio, Antonio José; Montes Pita, María JoséSolar thermal power plants for electricity production include, at least, two main systems: the solar field and the power block. Regarding this last one, the particular thermodynamic cycle layout and the working fluid employed, have a decisive influence in the plant performance. In turn, this selection depends on the solar technology employed. Currently, the steam Rankine cycle is the most widespread and commercially available power block option, usually coupled to a parabolic trough solar field. However, other configurations have been implemented in solar thermal plants worldwide. Most of them are based on other solar technologies coupled to a steam Rankine cycle, although integrated solar Combined cycles have a significant level of implementation. In the first place, power block configurations based on conventional thermodynamic cycles -Rankine, Brayton and combined Brayton-Rankine- are described. The achievements and challenges of each proposal are highlighted, for example, the benefits involved in hybrid solar source/fossil fuel plants. In the second place, proposals of advanced power block configuration are analyzed, standing out: supercritical CO2 Brayton cycles, advanced organic cycles and innovative integrated solar combined cycles. Each of these proposals show some advantages compared to the conventional layouts in certain power or source temperature ranges and hence they could be considered attractive options in the medium term. At last, a brief review of proposals of solar thermal integration with other renewable heat sources is also included.Publicación Performance of a 5kWe Organic Rankine Cycle at part-load operation(Elsevier, 2014-05) Ibarra Mollá, Mercedes; Rovira de Antonio, Antonio José; Alarcón-Padilla, Diego-César; Blanco Galvez, Julian; https://orcid.org/0000-0002-8843-8511; https://orcid.org/0000-0001-7329-380XThis paper analyzes the performance of an Organic Rankine Cycle (ORC) system at part load operation. The objective is to understand its behavior from a thermodynamic perspective, identifying which elements are the most critical and which are the best operating points for each level of demanded power. This paper also compares two working fluids: R245fa and Solkatherm ES36 (SES36) for the same cycle specifications. The results have shown that the scroll isentropic efficiency has a great influence on the cycle performance and its thermal efficiency and that SES36 arises as a potential better fluid than R245fa. At the given maximum and minimum temperatures, the best operation point was determined. This allows reaching a maximum efficiency for each demanded level of power; depending on the required amount of power, the expander speed and the working pressure are adjusted.Publicación A new design of multi-tube receiver for Fresnel technology to increase the thermal performance(Elsevier, 2022-03-05) Abbas, Rubén; Montes Pita, María José; Barbero Fresno, Rubén; Rovira de Antonio, Antonio JoséSolar heat for industrial processes is a promising way to meet the high thermal demand required by the industry, while this application becomes an important niche market for solar technology. In this research line, it is proposed a novelty concept based on a rotary Fresnel solar collector to supply heat above 150 °C. This work is focused on the multi-tube receiver for this Fresnel collector, proposing a thermal design based on three criteria that can be generalized for any multi-tube receiver: the fluid flow layout is arranged to meet the symmetry of the solar flux map; the fluid circulates from the lower to the higher flux density zone; and the fluid velocity is modified by modifying the tube diameter, to optimize the heat transfer. Following these criteria, the final configuration of the receiver is chosen based on an exergy optimization, in which both heat loss and pressure drop must be quantified. It has been also accomplished a generalization of the optimization methodology for Fresnel collectors providing heat at different temperatures, showing that, in these cases, the configuration that maximizes the exergy efficiency does not correspond to the one with the highest energy efficiency. This thermal design method can be applied to multi-tube receivers working at higher temperatures in longer Fresnel loops, in which case the optimization will result in more marked differences between the optimal values and the standard ones.