Persona:
Pérez Esteban, Javier

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0003-0996-6795
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Pérez Esteban
Nombre de pila
Javier
Nombre

Resultados de la búsqueda

Mostrando 1 - 2 de 2
  • Publicación
    Red sobre Valoración de los créditos ECTS e implantación de nuevas estrategias de enseñanza aprendizaje en las asginaturas «Química general» y «Bases químicas del medio ambiente y Ecología»
    (2009-09) Cabildo Miranda, Mª del Pilar; Claramunt Vallespí, Rosa María; Cornago Ramírez, M. del Pilar; Crespi Salom, Pere; Esteban Santos, Soledad; Vázquez Segura, Miguel Ángel; Escolástico León, Consuelo; Pérez Esteban, Javier
  • Publicación
    Use of magnetite nanoparticles and magnetic separation for the removal of metal(loid)s from contaminated mine soils
    (ELSEVIER, 2025) Caballero Mejia, Bibiana; Moliner, Ana; Hontoria Fernández, Chiquinquirá; Mariscal Sancho, Ignacio; Pérez Esteban, Javier; Escolástico León, Consuelo; https://orcid.org/0000-0002-0090-0741; https://orcid.org/0000-0001-5963-1964; https://orcid.org/0000-0002-8089-0327; https://orcid.org/0000-0003-2344-6710
    Magnetite nanoparticles have been successfully used for removal and immobilization of contaminants in water, yet their application in soils combined with in situ magnetic separation remains unexplored. We evaluated the effectiveness and optimal conditions for using magnetite nanoparticles combined with magnetic separation to remove metal(loid)s from contaminated mine soils. Soil samples were incubated (15, 45 days) with varying doses of magnetite (0, 25, 50 g kg⁻¹) and moisture (dry, field capacity) and separated using electromagnet or permanent magnet. This technique achieved up to 44 % As, 65 % Cd, 60 % Cu, 47 % Fe, 40 % Mn, 65 % Pb, and 62 % Zn removal, leaving minimal residual magnetite in the soil. These high removal efficiencies were attributed to the nanoparticles' magnetic properties, adsorption capacity and ability to form aggregates with soil particles. Optimal conditions were 25 g kg⁻¹ of magnetite incubated for 45 days at field capacity and separated by the electromagnet. Higher doses (50 g kg⁻¹) offered minimal improvement at increased costs. The combined use of magnetite nanoparticles and in situ magnetic separation demonstrated a low-impact and cost-effective method for reducing metal(loid) concentrations to levels that facilitate subsequent soil remediation strategies.