Persona:
Aranda Escolástico, Ernesto

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0003-0801-9286
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Aranda Escolástico
Nombre de pila
Ernesto
Nombre

Resultados de la búsqueda

Mostrando 1 - 10 de 29
  • Publicación
    Fuzzy logic vs analytic controllers on a non-linear system
    (World Scientific, 2014) Aranda Escolástico, Ernesto; Guinaldo Losada, María; Dormido Canto, Sebastián; Santos, Matilde
    In this paper, an intelligent control of the rotary inverted pendulum by fuzzy logic is presented. Specifically, the design consists of a Takagi-Sugeno fuzzy model to approximate the non-linear system to a succession of points where a linear system is described. A feedback gain is obtained that allows the stabilization of the inverted pendulum in a higher attractor than in the case of analytic Full State Feedback controller or Linear Quadratic Regulator.
  • Publicación
    Stability of output event-based control systems through quadratic trigger functions
    (IEEE, 2015-10) Aranda Escolástico, Ernesto; Guinaldo Losada, María; Dormido Canto, Sebastián
    The design of event-based controllers for systems with unknown states is investigated in this paper. The case of general quadratic triggering conditions that depend on the estimated state given by a Luenberger observer is studied. Novel frameworks are proposed for continuous and periodic event-based control providing criteria for asymptotic stability with the form of Linear Matrix Inequalities (LMIs). The frameworks are tested in simulation through a challenging system, such as the double rotary inverted pendulum.
  • Publicación
    A novel approach for periodic event-triggering based on general quadratic functions
    (IEEE, 2015) Aranda Escolástico, Ernesto; Guinaldo Losada, María; Dormido Canto, Sebastián
    This paper is concerned with periodic event-triggered control, which avoids the continuous monitoring of the state of the system while reducing the number of control updates. A new form of quadratic event-triggering condition is proposed to enlarge the inter-event times. The asymptotic stability criteria is analyzed by means of Lyapunov-Krasovskii functionals and the stability condition is expressed in terms of linear matrix inequalities. Simulation and experimental results are given to show the effectiveness of the proposed method.
  • Publicación
    Novel aperiodic sampling and control strategies: application to underactuated systems
    (Universidad Nacional de Educación a Distancia (España). Escuela Internacional de Doctorado. Programa de Doctorado en Ingeniería de Sistemas y Control, 2018-09-21) Aranda Escolástico, Ernesto; Dormido Bencomo, Sebastián; Guinaldo Losada, María
    The work in this thesis explores the possibilities of aperiodic sampling and control. Using the advances of the last decades in the field of networked systems, the main objective is to obtain methods to use the sampling period of the different measurements of the system to improve the performance or to reduce the transmission of information. With this idea, different eventtriggered control and multi-rate control schemes are proposed. In addition, this thesis aims to provide a practical usage of the strategies and, hence, different simulation and experimental results are developed. In the event-triggered control scenario, different periodic event-triggered strategies are proposed to deal asynchronous sampling, time-varying delays, disturbance rejection, etc. in linear systems. Besides, the practical application of the strategies commonly implies to deal with nonlinear systems. For this reason, some parts are dedicated to the extensions of the proposed strategies to some classes of nonlinear systems. Concretely, polynomial systems and inverted pendulum-type systems are studied. In the multi-rate scenario, the objective is tomaximize the performance of the plant considering that the information received from the sensor is collected at a lower frequency than the actuator’s rate and, hence, several inputs can be applied to the plant in each output sampling period. With this idea, some optimization methods are proposed and different strategies for their practical application are discussed. The methods are applied to an air levitation system with the main goal of obtaining an experimental validation. With theMatlab library for process control simulations, we close the loop providing tools to carry out the simulations necessary to validate the aforementioned theoretical frameworks. Finally, the objective of the last paper is to study alternative aperiodic control strategies in the framework of underactuated systems.
  • Publicación
    Distributed targeted distance-based formation control for mechanical systems
    (IEEE Xplore, 2020-07-20) Aranda Escolástico, Ernesto; Colombo, Leonardo; Guinaldo Losada, María
    This paper studies the problem of distributed targeted distance-based formation control for mechanical systems. The problem consists on finding a distributed control law such that if each agent observes a convex set as a targeted set, and also the relative position of their nearest neighbors, then the agents must achieve the desired formation in these sets while its velocities are driven to zero. We study the problem for agents with a time-delay communication in the measurements of the relative positions and where the motion of each agent is determined by a Lagrangian function. Simulation are given to validate the theoretical result.
  • Publicación
    An Object-Oriented Library for Process Control Simulations in MATLAB
    (ELSEVIER, 2017) Rodríguez, Carlos; Guinaldo Losada, María; Aranda Escolástico, Ernesto; Guzmán, José L.
    This paper presents a library of MATLAB classes developed to provide a framework to allow performing easy and scalable process control simulations. The proposed object-oriented tool features the basic components of a control loop including: processes, controllers, sensors, actuators and connection links. The simulator can be configured to carry out simulations with continuous and/or discrete elements, and/or include event-triggered capabilities in a straightforward manner. The benefits of the proposed library are shown with the rapid development and simulation of a quadruple-tank system that is controlled by means of a PI controller.
  • Publicación
    Periodic Event-Triggered Swing-Up Control of the Inverted Pendulum
    (Springer, 2016) Aranda Escolástico, Ernesto; Gordillo, F.; Guinaldo Losada, María; Dormido Canto, Sebastián; Garrido, Paulo; Soares, Filomena; Moreira, António Paulo
    In this paper, a novel strategy for swinging up an inverted pendulum is proposed. The strategy combines an energy-based control law with an event triggering condition to minimize transmissions, protect actuators and save energy. In addition, the strategy is periodic event-triggered, which provides two main advantages: An analytical way to determine a priori the sampling period to guarantee the appropriate behavior and an easy implementation in real prototypes.
  • Publicación
    Design of periodic event-triggered control for polynomial systems: A delay system approach
    (Elsevier, 2017-10-17) Aranda Escolástico, Ernesto; Abdelrahim, M.; Guinaldo Losada, María; Dormido Canto, Sebastián; Heemels, W.P.M.H.
    Event-triggered control is a control strategy which allows the savings of communication resources in networked control systems. In this paper, we are interested in periodic eventtriggering mechanisms in the sense that the triggering condition is only verified at predefined periodic sampling instants, which automatically ensures that Zeno behavior does not occur. We consider the case where both the output measurement and the control input are transmitted asynchronously using two independent triggering conditions. The developed result is dedicated to a class of nonlinear systems, where both the plant model and the feedback law can be described by polynomial functions. The overall problem is modeled and analyzed in the framework of time-delay systems, which allows to derive sum-of-squares (SOS) conditions to guarantee the global asymptotic stability in terms of the sampling period and the parameters of the triggering conditions. The approach is illustrated on a nonlinear numerical example.
  • Publicación
    Underwater coverage with a mobile robot of limited control authority
    (IEEE, 2018) Aranda Escolástico, Ernesto; Cortes, Jorge; Guinaldo Losada, María; Dormido Canto, Sebastián; https://orcid.org/0000-0001-9582-5184
    This work considers the coverage of underwater areas with a mobile robot with constrained control and communication capabilities. While underwater, the robot can control its depth but it is subject to flow in the other directions. While on the surface, it can move (essentially) freely. The aim of the work is the coverage of the areas with the minimum waste of resources. For that, we propose a two-part algorithm, where one part is a genetic algorithm and the other part is an algorithm based on Netwton's method. Numerical simulations are provided to illustrate the efficiency of the algorithm.
  • Publicación
    Optimisation of spectrum use by Mode S surveillance systems through coordinated DAP extraction
    (IEEE Xplore, 2024-10-17) Ceballos Gutierrez, Javier; Aranda Escolástico, Ernesto; Moreno Salinas, David; https://orcid.org/0000-0001-6440-6120
    The cooperative surveillance systems used for air traffic management rely completely on air–ground transactions carried out in the 1030/1090 MHz frequency bands to fulfill their surveillance mission. However, these spectrum bands are currently subject to an excessive number of transactions that make difficult the access to the channels and often exceed the reply capabilities of aircraft transponders, which may impact air traffic capacity or even create safety risks. Several mitigation strategies have been studied in recent years to decrease the occupancy of the 1030/1090 MHz bands. Nevertheless, none of the proposed strategies have yet addressed the possibility of decreasing transactions related to downlinked aircraft parameters (DAP) extracted from transponder registers of aircraft. This work proposes and tests a methodology to coordinate the DAP extractions performed by several Mode S systems in order to avoid a high number of unnecessary transactions in the spectrum channels, while keeping the same level of information available at the endpoint of the surveillance chain.