Persona: Rubio Alvir, Eva María
Cargando...
Dirección de correo electrónico
ORCID
0000-0001-8385-3540
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Rubio Alvir
Nombre de pila
Eva María
Nombre
31 resultados
Resultados de la búsqueda
Mostrando 1 - 10 de 31
Publicación Analysis of Force Signals for the Estimation of Surface Roughness during Robot-Assisted Polishing(MDPI, 2018-08-15) Teti, Roberto; Agustina Tejerizo, Beatriz De; Marín Martín, Marta María; Rubio Alvir, Eva MaríaIn this study feature extraction of force signals detected during robot-assisted polishing processes was carried out to estimate the surface roughness during the process. The purpose was to collect significant features from the signal that allow the determination of the end point of the polishing process based on surface roughness. For this objective, dry polishing turning tests were performed on a Robot-Assisted Polishing (RAP) machine (STRECON NanoRAP 200) during three polishing sessions, using the same polishing conditions. Along the tests, force signals were acquired and offline surface roughness measurements were taken at the end of each polishing session. As a main conclusion, it can be affirmed, regarding the force signal, that features extracted from both time and frequency domains are valuable data for the estimation of surface roughness.Publicación Sustainable Lubrication/Cooling Systems for Efficient Turning Operations of γ‑TiAl Parts from the Aeronautic Industry(Springer, 2023-05-01) Benedicto Bardolet, Elisabet; Aubouy, Laurent; Saéz Nuño, María Ana; Rubio Alvir, Eva MaríaThis paper presents the study of the finishing, repair, and maintenance turning operations of gamma titanium aluminide (γ-TiAl) parts from the aeronautic industry, with the aim to evaluate different sustainable lubrication/cooling environments, including a newly developed synthetic ester water-based metalworking fluid (EcoMWF) to replace mineral-based MWF (MWF). The systems considered in this work are dry, cold-compressed air, minimum quantity lubrication (MQL), cryogenic, and flood on turning of a new and relatively low explored titanium alloy, γ-TiAl. Therefore, the influence of machining parameters and insert type on tool wear, surface roughness, roundness, and cutting temperature have been investigated for each environment. Results detailed in this study showed a significant influence of the lubrication/cooling systems on the machinability of γ-TiAl. The study also revealed that the sustainability of turning γ-TiAl could be improved under the cryogenic system and the new EcoMWF, keeping the same machining performance as common mineral-based MWF.Publicación Experimental study of magnesium drilling based on the surface quality(Elsevier, 2019) Berzosa, Fernando; Agustina Tejerizo, Beatriz De; Rubio Alvir, Eva María; Marín Martín, Marta MaríaNowadays, the use of magnesium and its alloys for transport applications is based on the combination of high mechanical properties and low density. In general, the machinability of these materials is considered to be good. Nevertheless, it has been reported that the machining of these alloys involves some critical problems regarding their tendency to be flammable at high temperatures and consequently, there is a risk of chip ignition in the working area during the process. This fact is especially critical when the size of chips is reduced. In this study, the influence of cutting conditions on surface roughness, in terms of Ra, obtained by drilling of magnesium alloy (AZ91D-F) was carried out. A factorial design 2 4 was employed for the planning of the drilling tests. The factors considered were the feed rate (0.05 and 0.2 mm/r), cutting speed, 40 and 60 m/min, the type of tool, in particular, the point angle of 118º and 135º, and the cooling system, Dry conditions and MQL (Minimum Quantity Lubrication) system. As main conclusions it can be affirmed that improved surface roughness is obtained with the cutting conditions selected in this study. Furthermore, at 0.05 mm/r and 40 m/min the use of tools with a point angle of 135º provides lower values of Ra than the tool of 118º point angle. Slightly lower values of Ra are obtained with tools of 118º point angle at 0.2 mm/r and 60 m/min.Publicación Thicknesses/Roughness Relationship in Mg-Al-Mg and Mg-Ti-Mg Hybrid Component Plates for Drilled Aeronautical Lightweight Parts(MDPI, 2020-11-19) Blanco, David; Rubio Alvir, Eva María; Sáenz de Pipaón, José Manuel; Marín Martín, Marta María; MDPI; https://orcid.org/0000-0002-3776-5010Multimaterial hybrid compounds formed from lightweight structural materials have been acquiring great importance in recent years in the aeronautical and automotive sectors, where they are replacing traditional materials to reduce the mass of vehicles; this will enable either an increase in the action ratio or a reduction in the fuel consumption of vehicles and, in short, will lead to savings in transport costs and a reduction in polluting emissions. Besides, the implementation of production and consumption models based on the circular economy is becoming more and more important, where the repair and, for this purpose, the use of recyclable materials, is crucial. In this context, the analysis of a repair process is carried out by re-drilling Mg-Al-Mg multimaterial components using experimental design (DoE) based on Taguchi methodology, an analysis of variance (ANOVA) and descriptive statistics. The study concludes which are the significant factors and interactions of the process, comparing the results with previous similar studies, and establishing bases to determine the optimum thicknesses of hybrid magnesium-based component plates of drilled parts in the aeronautical industry, guaranteeing surface roughness requirements in repair and maintenance operations throughout their lifetime.Publicación Geometric Optimization of Drills Used to Repair Holes in Magnesium Aeronautical Components(MPDI, 2020-11-18) Berzosa, Fernando; Davim, J. P.; Rubio Alvir, Eva María; Agustina Tejerizo, Beatriz DeMagnesium alloys are used in the aeronautical sector due to their excellent strength/weight ratios, motivated by the reduction of weight that their use entails. In this sector, drilling is one of the most common operations, if not the most, due to the large number of holes that are used in joining processes, mainly by riveting. The appearance of cracks is a risk to the structural safety of the components, such that it is necessary to regularly check them for maintenance and/or repair tasks. The present study tries to determine the optimization of the characteristics of the twist drills, which are re-sharpened successively to restore the cutting edge after use, as well as the operating parameters in machining. For this purpose, a full factorial experimental design was established, analyzing through the analysis of the variance (ANOVA) the response variables. Surface integrity was considered to carry out a global vision of the quality obtained, covering as response variables the surface roughness, the size of the burrs and the modification of the hardness produced, in addition to a topological characterization by optical means of machined surfaces. The main conclusion is that it is possible that the geometric optimization of the tools and the operating parameters considered in this study in drilling processes allow them to be performed, while maintaining quality and environmental requirements, and at the same time, maximize the productivity of operations.Publicación Lightweight Structural Materials in Open Access: Latest Trends(MDPI, 2021-11-02) Blanco, David; Lorente Pedreille, Raquel María; Saéz Nuño, María Ana; Rubio Alvir, Eva MaríaThe aeronautical and automotive industries have, as an essential objective, the energy efficiency optimization of aircraft and cars, while maintaining stringent functional requirements. One working line focuses on the use of lightweight structural materials to replace conventional materials. For this reason, it is considered enlightening to carry out an analysis of the literature published over the last 20 years through Open Access literature. For this purpose, a systematic methodology is applied to minimize the possible risks of bias in literature selection and analysis. Web of Science is used as a search engine. The final selection comprises the 30 articles with the highest average numbers of citations per year published from 2015 to 2020 and the 7 articles published from the period of 2000–2014. Overall, the selection is composed of 37 Open Access articles with 2482 total citations and an average of 67.1 citations per article/year published, and includes Q1 (62%) and Q2 (8%) articles and proceeding papers (30%). The study seeks to inform about the current trends in materials and processes in lightweight structural materials for aeronautical and automotive applications with a sustainable perspective. All the information collected is summarized in tables to facilitate searches and interpretation by interested researchers.Publicación Influence of the Main Blown Film Extrusion Process Parameters on the Mechanical Properties of a High-Density Polyethylene Hexene Copolymer and Linear Low-Density Polyethylene Butene Copolymer Blend Used for Plastic Bags(MDPI, 2023-11-09) Cuesta, Francisco; Camacho López, Ana María; Rubio Alvir, Eva María; MDPIPolyethylene plastic bags manufactured via blown film extrusion have different quality specifications depending on their intended use. It is known that the mechanical properties of a film depend on the process parameters established, but little is known concerning how they affect one another, even more so due to the variety of polyethylene materials and processing techniques. This study focuses on establishing a proper correspondence of important mechanical properties like the dart impact, tensile strength at break, and elongation at break with commonly used process parameters like the blow-up ratio, take-up ratio, thickness reduction, and neck height, for a highdensity polyethylene hexene copolymer and a linear low-density polyethylene butene copolymer blend film. Because this polyethylene mixture is an anisotropic material, interesting R2 values equal to or higher than 0.90 were found: a BUR with elongation at break and tensile strength at break in the MD and TD, a TUR with elongation at break in the MD and tensile strength at break in the MD and TD, and a TR with elongation at break and tensile strength at break in the MD. Also, a relationship between the dart impact and both the neck height and thickness were found.Publicación Análisis comparativo de modelos de bloques rígidos triangulares en el estudio mecánico de procesos de estirado por límite superior.(CSIC, 2004-02-28) Rubio Alvir, Eva María; Domingo Navas, María Rosario; González, C.; Sanz, A.; CSICEl objetivo principal de este trabajo es estudiar la configuración geométrica optimizada para llevar a cabo el embutido mecánico de placas. Para ello, se ha realizado un análisis comparativo de algunas configuraciones geométricas y cinemáticas adecuadas del material situado en la zona de deformación. En concreto, se han elegido varios modelos de zona rígida triangular, para cada uno de ellos se ha calculado la energía global implicada en el proceso y se ha realizado una estimación de sus diferentes componentes. El cálculo de la energía se ha realizado aplicando el Teorema de la Cota Superior en condiciones de deformación plana y fricción parcial. Además, se ha establecido el rango de utilización de las configuraciones seleccionadas.Publicación Feasibility Study of Hole Repair and Maintenance Operations by Dry Drilling of Magnesium Alloy UNS M11917 for Aeronautical Components(MDPI, 2019-06-30) Berzosa, Fernando; Davim, J. P.; Agustina Tejerizo, Beatriz De; Rubio Alvir, Eva MaríaMagnesium alloys are increasingly used due to the reduction of weight and pollutants that can be obtained, especially in the aeronautical, aerospace, and automotive sectors. In maintenance and repair tasks, it is common to carry out re-drilling processes, which must comply with the established quality requirements and be performed following the required safety and environmental standards. Currently, there is still a lack of knowledge of the machining of these alloys, especially with regards to drilling operations. The present article studies the influence of different cutting parameters on the surface quality obtained by drilling during repair and/or maintaining operations. For this propose, an experimental design was established that allows for the optimization of resources, using the average roughness (Ra) as the response variable, and it was analyzed through the analysis of variance (ANOVA). The results were within the margins of variation of the factors considered: the combination of factor levels that keep the Ra within the established margin, those that allow for the minimization of roughness, and those that allow for the reduction of machining time. In this sense, these operations were carried out in the most efficient way.Publicación Analysis of Force Signals for the Estimation of Surface Roughness during Robot-Assisted Polishing(MDPI, 2018-08-15) Agustina Tejerizo, Beatriz De; Marín Martín, Marta María; Teti, Roberto; Rubio Alvir, Eva María; MDPIIn this study feature extraction of force signals detected during robot-assisted polishing processes was carried out to estimate the surface roughness during the process. The purpose was to collect significant features from the signal that allow the determination of the end point of the polishing process based on surface roughness. For this objective, dry polishing turning tests were performed on a Robot-Assisted Polishing (RAP) machine (STRECON NanoRAP 200) during three polishing sessions, using the same polishing conditions. Along the tests, force signals were acquired and offline surface roughness measurements were taken at the end of each polishing session. As a main conclusion, it can be affirmed, regarding the force signal, that features extracted from both time and frequency domains are valuable data for the estimation of surface roughness.