Persona:
Rubio Alvir, Eva María

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0001-8385-3540
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Rubio Alvir
Nombre de pila
Eva María
Nombre

Resultados de la búsqueda

Mostrando 1 - 5 de 5
  • Publicación
    Sustainable Processes in Aluminium, Magnesium, and Titanium Alloys Applied to the Transport Sector: A Review
    (MDPI, 2021-12-22) Blanco, David; Lorente Pedreille, Raquel María; Saéz Nuño, María Ana; Rubio Alvir, Eva María
    The reduction of consumption and pollutant emissions is a top priority for the transport sector. One working line is the substitution of conventional structural materials with lightweight materials such as metallic alloys of aluminium, titanium, and/or magnesium. For this reason, and considering that the number of related articles is lower than the existing number of other structural lightweight materials, it is considered very convenient and helpful to carry out a systematic analysis of their latest trends through Open Access literature. A methodology adapted from the PRISMA statement is applied, in order to guarantee unbiasedness and quality in selecting literature and research. The final selection is made up of the 40 most cited research papers from 2015–2020, with an average of 20.6 citations per article. Turning and drilling are the most trending machining processes, and there is particular interest in the study of sustainable cooling, such as dry machining, cryogenic cooling, and MQL. In addition, another trending topic is multi-materials and joining dissimilar materials with guarantees. Additive manufacturing has also been identified as an increasingly trending theme, appearing in 18% of the selected studies. This work is complemented with summary tables of the most cited Open Access articles on sustainable machining and cooling, multi-materials or hybrid components, and additive manufacturing.
  • Publicación
    Formulation of SustainableWater-Based Cutting Fluids with Polyol Esters for Machining Titanium Alloys
    (MDPI, 2021-05-08) Benedicto Bardolet, Elisabet; Aubouy, Laurent; Saéz Nuño, María Ana; Rubio Alvir, Eva María
    The machinability of titanium alloys still represents a demanding challenge and the development of new clean technologies to lubricate and cool is greatly needed. As a sustainable alternative to mineral oil, esters have shown excellent performance during machining. Herein, the aim of this work is to investigate the influence of esters’ molecular structure in oil-in-water emulsions and their interaction with the surface to form a lubricating film, thus improving the efficiency of the cutting fluid. The lubricity performance and tool wear protection are studied through film formation analysis and the tapping process on Ti6Al4V. The results show that the lubricity performance is improved by increasing the formation of the organic film on the metal surface, which depends on the ester’s molecular structure and its ability to adsorb on the surface against other surface-active compounds. Among the cutting fluids, noteworthy results are obtained using trimethylolpropane trioleate, which increases the lubricating film formation (containing 62% ester), thus improving the lubricity by up to 12% and reducing the torque increase due to tool wear by 26.8%. This work could be very useful for fields where often use difficult-to-machine materials—such as Ti6Al4V or γ-TiAl—which require large amounts of cutting fluids, since the formulation developed will allow the processes to be more efficient and sustainable.
  • Publicación
    Sustainable Lubrication/Cooling Systems for Efficient Turning Operations of γ‑TiAl Parts from the Aeronautic Industry
    (Springer, 2023-05-01) Benedicto Bardolet, Elisabet; Aubouy, Laurent; Saéz Nuño, María Ana; Rubio Alvir, Eva María
    This paper presents the study of the finishing, repair, and maintenance turning operations of gamma titanium aluminide (γ-TiAl) parts from the aeronautic industry, with the aim to evaluate different sustainable lubrication/cooling environments, including a newly developed synthetic ester water-based metalworking fluid (EcoMWF) to replace mineral-based MWF (MWF). The systems considered in this work are dry, cold-compressed air, minimum quantity lubrication (MQL), cryogenic, and flood on turning of a new and relatively low explored titanium alloy, γ-TiAl. Therefore, the influence of machining parameters and insert type on tool wear, surface roughness, roundness, and cutting temperature have been investigated for each environment. Results detailed in this study showed a significant influence of the lubrication/cooling systems on the machinability of γ-TiAl. The study also revealed that the sustainability of turning γ-TiAl could be improved under the cryogenic system and the new EcoMWF, keeping the same machining performance as common mineral-based MWF.
  • Publicación
    Comparison of sustainable cooling systems used in the drilling repair of Mg-Al and Mg-Ti multi-material parts in the aeronautical industry
    (Elsevier, 2022-11-01) Blanco, David; Saéz Nuño, María Ana ; Lorente Pedreille, Raquel María; Rubio Alvir, Eva María
    The article presents as a novelty a comparative study of the efficiency of different sustainable cooling systems in the re-drilling repair process of magnesium-based multi-material components for aeronautical and automotive sectors. The cooling systems compared are: dry machining, minimum quantity of lubricant with eco-fluid (MQL-Eco), cold compressed air (CCA) and cryogenic machining. Multi-materials used are magnesium-aluminium and magnesium-titanium combinations. The study uses descriptive statistics and ANOVA to conclude the significant factors and interactions. Conclusions highlight differences depending on the type of response variable chosen. The best results for the Mg-Al-Mg are obtained using MQL-Eco, and for Mg-Ti-Mg with cryogenic machining.
  • Publicación
    Lightweight Structural Materials in Open Access: Latest Trends
    (MDPI, 2021-11-02) Blanco, David; Lorente Pedreille, Raquel María; Saéz Nuño, María Ana; Rubio Alvir, Eva María
    The aeronautical and automotive industries have, as an essential objective, the energy efficiency optimization of aircraft and cars, while maintaining stringent functional requirements. One working line focuses on the use of lightweight structural materials to replace conventional materials. For this reason, it is considered enlightening to carry out an analysis of the literature published over the last 20 years through Open Access literature. For this purpose, a systematic methodology is applied to minimize the possible risks of bias in literature selection and analysis. Web of Science is used as a search engine. The final selection comprises the 30 articles with the highest average numbers of citations per year published from 2015 to 2020 and the 7 articles published from the period of 2000–2014. Overall, the selection is composed of 37 Open Access articles with 2482 total citations and an average of 67.1 citations per article/year published, and includes Q1 (62%) and Q2 (8%) articles and proceeding papers (30%). The study seeks to inform about the current trends in materials and processes in lightweight structural materials for aeronautical and automotive applications with a sustainable perspective. All the information collected is summarized in tables to facilitate searches and interpretation by interested researchers.