Persona:
Rubio Alvir, Eva María

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0001-8385-3540
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Rubio Alvir
Nombre de pila
Eva María
Nombre

Resultados de la búsqueda

Mostrando 1 - 10 de 16
  • Publicación
    Repairing Hybrid Mg–Al–Mg Components Using Sustainable Cooling Systems
    (MDPI, 2020-01-15) Blanco, David; Paulo Davim, Joao; Rubio Alvir, Eva María; Marín Martín, Marta María
    This paper focused on the maintenance or repair of holes made using hybrid Mg–Al–Mg components by drilling, using two sustainable cooling techniques (dry machining and cold compressed air) and taking surface roughness on the inside of the holes as the response variable. The novelty of the work is in proving that the repair operations of the multi-material components (magnesium–aluminum–magnesium) and the parts made of aluminum and magnesium (separately) but assembled to form a higher component can be done simultaneously, thus reducing the time and cost of the assembly and disassembly of this type of component. The study is based on a design of experiments (DOE) defined as a product of a full factorial 23 and a block of two factors (3 × 2). Based on our findings, we propose that the analyzed operations are feasible under sustainable conditions and, in particular, under dry machining. Also, the results depend on the machining order.
  • Publicación
    Analysis of Force Signals for the Estimation of Surface Roughness during Robot-Assisted Polishing
    (MDPI, 2018-08-15) Teti, Roberto; Agustina Tejerizo, Beatriz De; Marín Martín, Marta María; Rubio Alvir, Eva María
    In this study feature extraction of force signals detected during robot-assisted polishing processes was carried out to estimate the surface roughness during the process. The purpose was to collect significant features from the signal that allow the determination of the end point of the polishing process based on surface roughness. For this objective, dry polishing turning tests were performed on a Robot-Assisted Polishing (RAP) machine (STRECON NanoRAP 200) during three polishing sessions, using the same polishing conditions. Along the tests, force signals were acquired and offline surface roughness measurements were taken at the end of each polishing session. As a main conclusion, it can be affirmed, regarding the force signal, that features extracted from both time and frequency domains are valuable data for the estimation of surface roughness.
  • Publicación
    Thicknesses/Roughness Relationship in Mg-Al-Mg and Mg-Ti-Mg Hybrid Component Plates for Drilled Aeronautical Lightweight Parts
    (MDPI, 2020-11-19) Blanco, David; Sáenz De Pipaón, José Manuel; Rubio Alvir, Eva María; Marín Martín, Marta María
    Multimaterial hybrid compounds formed from lightweight structural materials have been acquiring great importance in recent years in the aeronautical and automotive sectors, where they are replacing traditional materials to reduce the mass of vehicles; this will enable either an increase in the action ratio or a reduction in the fuel consumption of vehicles and, in short, will lead to savings in transport costs and a reduction in polluting emissions. Besides, the implementation of production and consumption models based on the circular economy is becoming more and more important, where the repair and, for this purpose, the use of recyclable materials, is crucial. In this context, the analysis of a repair process is carried out by re-drilling Mg-Al-Mg multimaterial components using experimental design (DoE) based on Taguchi methodology, an analysis of variance (ANOVA) and descriptive statistics. The study concludes which are the significant factors and interactions of the process, comparing the results with previous similar studies, and establishing bases to determine the optimum thicknesses of hybrid magnesium-based component plates of drilled parts in the aeronautical industry, guaranteeing surface roughness requirements in repair and maintenance operations throughout their lifetime.
  • Publicación
    Parametric Analysis of the Mandrel Geometrical Data in a Cold Expansion Process of Small Holes Drilled in Thick Plates
    (MDPI, 2019-12-08) Calaf Chica, José; Teti, Roberto; Segreto, Tiziana; Marín Martín, Marta María; Rubio Alvir, Eva María
    Cold expansion technology is a cold-forming process widely used in aeronautics to extend the fatigue life of riveted and bolted holes. During this process, an oversized mandrel is pushed through the hole in order to yield it and generate compressive residual stresses contributing to the fatigue life extension of the hole. In this paper, a parametric analysis of the mandrel geometrical data (inlet angle straight zone length and diametric interference) and their influence on the residual stresses was carried out using a finite element method (FEM). The obtained results were compared with the conclusions presented in a previous parametric FEM analysis on the influence of the swage geometry in a swaging cold-forming process of gun barrels. This process could be considered, in a simplified way, as a scale-up of the cold expansion process of small holes, and this investigation demonstrated the influence of the diameter ratio (K) on the relation between the mandrel or swage geometry and the residual stresses obtained after the cold-forming process.
  • Publicación
    The Role of Surfactant Structure on the Development of a Sustainable and Eective Cutting Fluid for Machining Titanium Alloys
    (MDPI, 2020-10-19) Benedicto Bardolet, Elisabet; Carou Porto, Diego; Santacruz, Coral; Rubio Alvir, Eva María
    A novel direct method based on infrared reflection absorption spectroscopy (IRRAS) and carbon elemental analysis has been developed for the quantitative determination of fatty acid ester on Ti6Al4V surface. The new approach involves the IR spectra and carbon analysis of a Ti6Al4V strip treated with a surfactant and ester emulsion adjusted to pH 9.2 with 2-aminoethanol. The results are dependent on the ester and surfactant concentration. The analytical signals are the integral value of the CH2 and CO signals of the IR spectra and the carbon content. The main advantage of the proposed method is that the analysis made directly on the metal surface allows knowing the film forming ability of the emulsion. The method may be useful for research and development of more environmentally friendly water-based metalworking fluids for the metal industry.
  • Publicación
    A novel method for the determination of fatty acid esters in aqueous emulsion on Ti6Al4V surface with IRRAS and carbon quantification
    (Elsevier, 2018-12-01) Benedicto Bardolet, Elisabet; Carou Porto, Diego; Batlle, L.; Rubio Alvir, Eva María
    A novel direct method based on infrared reflection absorption spectroscopy (IRRAS) and carbon elemental analysis has been developed for the quantitative determination of fatty acid ester on Ti6Al4V surface. The new approach involves the IR spectra and carbon analysis of a Ti6Al4V strip treated with a surfactant and ester emulsion adjusted to pH 9.2 with 2-aminoethanol. The results are dependent on the ester and surfactant concentration. The analytical signals are the integral value of the CH2 and CO signals of the IR spectra and the carbon content. The main advantage of the proposed method is that the analysis made directly on the metal surface allows knowing the film forming ability of the emulsion. The method may be useful for research and development of more environmentally friendly water-based metalworking fluids for the metal industry.
  • Publicación
    Geometric Optimization of Drills Used to Repair Holes in Magnesium Aeronautical Components
    (MPDI, 2020-11-18) Berzosa Lara, Fernando; Davim, J. Paulo; Rubio Alvir, Eva María; Agustina Tejerizo, Beatriz De
    Magnesium alloys are used in the aeronautical sector due to their excellent strength/weight ratios, motivated by the reduction of weight that their use entails. In this sector, drilling is one of the most common operations, if not the most, due to the large number of holes that are used in joining processes, mainly by riveting. The appearance of cracks is a risk to the structural safety of the components, such that it is necessary to regularly check them for maintenance and/or repair tasks. The present study tries to determine the optimization of the characteristics of the twist drills, which are re-sharpened successively to restore the cutting edge after use, as well as the operating parameters in machining. For this purpose, a full factorial experimental design was established, analyzing through the analysis of the variance (ANOVA) the response variables. Surface integrity was considered to carry out a global vision of the quality obtained, covering as response variables the surface roughness, the size of the burrs and the modification of the hardness produced, in addition to a topological characterization by optical means of machined surfaces. The main conclusion is that it is possible that the geometric optimization of the tools and the operating parameters considered in this study in drilling processes allow them to be performed, while maintaining quality and environmental requirements, and at the same time, maximize the productivity of operations.
  • Publicación
    Tool Selection in Drilling of Magnesium UNSM11917 Pieces under Dry and MQL Conditions based on Surface Roughness
    (Elsevier, 2017) Berzosa Lara, Fernando; Agustina Tejerizo, Beatriz De; Rubio Alvir, Eva María
    Nowadays, the use of lighter materials for transportation purposes is still a challenge; especially in the aeronautical and aerospace sectors. The use of certain materials, such as magnesium alloys which have exceptional mechanical properties relative to density as structural materials, allows a remarkable reduction of weight. These alloys have significant challenges in machining. On the one hand, their use with water-based lubricants can produce flammable hydrogen atmospheres and, on the other hand, the operational parameters can produce tiny chips which, at high temperature, could burn. Regarding the tools, drills are the most used ones in drilling operations; manufacturers do not always take in consideration magnesium alloys. This is why, sometimes, the data from other types of similar alloys need to be extrapolated. This work shows an experimental study about the drilling of magnesium pieces based on surface roughness. The main goal is to determine the tools that best suit the requirement of surface roughness for this type of operations, which, for the aeronautical sector, is from 0.8 to 1.6 μm. The tests have been conducted under different cutting conditions, using several types of tools and two sustainable lubrication systems. In particular, dry machining and minimum quantity of lubrication (MQL) system have been used. A design of experiments (DOE) has been used to optimize the resources. The average roughness, Ra, has been selected as a response variable. The roughness values obtained are lower than 0.9 μm (namely, from 0.13 μm to 0.87 μm); so, it is possible to increase some of the parameter values, in order to improve the productivity, without they go outside the established limits. The results have been analyzed using the analysis of variance (ANOVA) method. A model for estimating the expected surface roughness in terms of the Rae, has been developed.
  • Publicación
    Experimental study of magnesium drilling based on the surface quality
    (Elsevier, 2019) Berzosa Lara, Fernando; Agustina Tejerizo, Beatriz De; Rubio Alvir, Eva María; Marín Martín, Marta María
    Nowadays, the use of magnesium and its alloys for transport applications is based on the combination of high mechanical properties and low density. In general, the machinability of these materials is considered to be good. Nevertheless, it has been reported that the machining of these alloys involves some critical problems regarding their tendency to be flammable at high temperatures and consequently, there is a risk of chip ignition in the working area during the process. This fact is especially critical when the size of chips is reduced. In this study, the influence of cutting conditions on surface roughness, in terms of Ra, obtained by drilling of magnesium alloy (AZ91D-F) was carried out. A factorial design 2 4 was employed for the planning of the drilling tests. The factors considered were the feed rate (0.05 and 0.2 mm/r), cutting speed, 40 and 60 m/min, the type of tool, in particular, the point angle of 118º and 135º, and the cooling system, Dry conditions and MQL (Minimum Quantity Lubrication) system. As main conclusions it can be affirmed that improved surface roughness is obtained with the cutting conditions selected in this study. Furthermore, at 0.05 mm/r and 40 m/min the use of tools with a point angle of 135º provides lower values of Ra than the tool of 118º point angle. Slightly lower values of Ra are obtained with tools of 118º point angle at 0.2 mm/r and 60 m/min.
  • Publicación
    Influence of the Main Blown Film Extrusion Process Parameters on the Mechanical Properties of a High-Density Polyethylene Hexene Copolymer and Linear Low-Density Polyethylene Butene Copolymer Blend Used for Plastic Bags
    (MDPI, 2023-11-09) Cuesta, Francisco; Camacho López, Ana María; Rubio Alvir, Eva María
    Polyethylene plastic bags manufactured via blown film extrusion have different quality specifications depending on their intended use. It is known that the mechanical properties of a film depend on the process parameters established, but little is known concerning how they affect one another, even more so due to the variety of polyethylene materials and processing techniques. This study focuses on establishing a proper correspondence of important mechanical properties like the dart impact, tensile strength at break, and elongation at break with commonly used process parameters like the blow-up ratio, take-up ratio, thickness reduction, and neck height, for a high-density polyethylene hexene copolymer and a linear low-density polyethylene butene copolymer blend film. Because this polyethylene mixture is an anisotropic material, interesting R2 values equal to or higher than 0.90 were found: a BUR with elongation at break and tensile strength at break in the MD and TD, a TUR with elongation at break in the MD and tensile strength at break in the MD and TD, and a TR with elongation at break and tensile strength at break in the MD. Also, a relationship between the dart impact and both the neck height and thickness were found.